This study presents the outcomes of the shared task competition BioCreative VII (Task 3) focusing on the extraction of medication names from a Twitter user's publicly available tweets (the user's 'timeline'). In general, detecting health-related tweets is notoriously challenging for natural language processing tools. The main challenge, aside from the informality of the language used, is that people tweet about any and all topics, and most of their tweets are not related to health.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature-at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation.
View Article and Find Full Text PDFBackground: In recent years, biological event extraction has emerged as a key natural language processing task, aiming to address the information overload problem in accessing the molecular biology literature. The BioNLP shared task competitions have contributed to this recent interest considerably. The first competition (BioNLP'09) focused on extracting biological events from Medline abstracts from a narrow domain, while the theme of the latest competition (BioNLP-ST'11) was generalization and a wider range of text types, event types, and subject domains were considered.
View Article and Find Full Text PDFBackground: Bio-molecular event extraction from literature is recognized as an important task of bio text mining and, as such, many relevant systems have been developed and made available during the last decade. While such systems provide useful services individually, there is a need for a meta-service to enable comparison and ensemble of such services, offering optimal solutions for various purposes.
Results: We have integrated nine event extraction systems in the U-Compare framework, making them intercompatible and interoperable with other U-Compare components.
BMC Bioinformatics
November 2008
Background: Due to the nature of scientific methodology, research articles are rich in speculative and tentative statements, also known as hedges. We explore a linguistically motivated approach to the problem of recognizing such language in biomedical research articles. Our approach draws on prior linguistic work as well as existing lexical resources to create a dictionary of hedging cues and extends it by introducing syntactic patterns.
View Article and Find Full Text PDF