Publications by authors named "Sabine A. Fuchs"

Traditional classification by clinical phenotype or oxidative phosphorylation (OXPHOS) complex deficiencies often fails to clarify complex genotype-phenotype correlations in mitochondrial disease. A multimodal functional assessment may better reveal underlying disease patterns. Using imaging flow cytometry (IFC), we evaluated mitochondrial fragmentation, swelling, membrane potential, reactive oxygen species (ROS) production, and mitochondrial mass in fibroblasts from 31 mitochondrial disease patients.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (ARSs) couple tRNAs with their corresponding amino acids. While ARSs can bind structurally similar amino acids, extreme specificity is ensured by subsequent editing activity. Yet, we found that upon isoleucine (I) restriction, healthy fibroblasts consistently incorporated valine (V) into proteins at isoleucine codons, resulting from misacylation of tRNAIle with valine by wildtype IARS1.

View Article and Find Full Text PDF

Purpose: Pediatric cholestasis is the phenotypic expression of clinically and genetically heterogeneous disorders of bile acid synthesis and flow. Although a growing number of monogenic causes of pediatric cholestasis have been identified, the majority of cases remain undiagnosed molecularly.

Methods: In a cohort of 299 pediatric participants (279 families) with intrahepatic cholestasis, we performed exome sequencing as a first-tier diagnostic test.

View Article and Find Full Text PDF

Direct infusion-high-resolution mass spectrometry (DI-HRMS) allows for rapid profiling of complex mixtures of metabolites in blood, cerebrospinal fluid, tissue samples and cultured cells. Here, we present a DI-HRMS method suitable for the rapid determination of metabolic fluxes of isotopically labeled substrates in cultured cells and organoids. We adapted an automated annotation pipeline by selecting labeled adducts that best represent the majority of C and/or N-labeled glycolytic and tricarboxylic acid cycle intermediates as well as a number of their derivatives.

View Article and Find Full Text PDF

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid β-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts.

View Article and Find Full Text PDF

Background: Implementation of long-chain fatty acid oxidation defects (LCFAOD) in newborn screening (NBS) programs allows for pre-symptomatic diagnosis and treatment. The long-term natural history of NBS LCFAOD patients is largely unknown and may differ from clinically diagnosed pre-NBS patients. This complicates long-term monitoring of LCFAOD and may cause high monitoring variability.

View Article and Find Full Text PDF

The Wilson and Jungner (W&J) and Andermann criteria are meant to help select diseases eligible for population-based screening. With the introduction of next-generation sequencing (NGS) methods for newborn screening (NBS), more inherited metabolic diseases (IMDs) can technically be included, and a revision of the criteria was attempted. This study aimed to formulate statements and investigate whether those statements could elaborate on the criterion of for IMDs to decide on eligibility for NBS.

View Article and Find Full Text PDF

Objective: We aim to investigate the effects of genetically based HLA matching on patient and graft survival, and acute and chronic rejection after liver transplantation.

Background: Liver transplantation is a common treatment for patients with end-stage liver disease. In contrast to most other solid organ transplantations, there is no conclusive evidence supporting human leukocyte antigen (HLA) matching for liver transplantations.

View Article and Find Full Text PDF

Background: Newborn screening (NBS) programmes identify a wide range of disease phenotypes, which raises the question whether early identification and treatment is beneficial for all. This study aims to answer this question for primary carnitine deficiency (PCD) taking into account that NBS for PCD identifies newborns with PCD and also until then undiagnosed mothers.

Methods: We investigated clinical, genetic (variants in gene) and functional (carnitine transport activity in fibroblasts) characteristics of all referred individuals through NBS (newborns and mothers) and clinically diagnosed patients with PCD (not through NBS).

View Article and Find Full Text PDF
Article Synopsis
  • Inborn-Errors of Metabolism (IEM) are genetic disorders caused by mutations in genes related to metabolic pathways, with some lacking specific biochemical markers.
  • Integrating next-generation sequencing (NGS), especially whole exome sequencing (WES), into IEM diagnostics enhances accuracy, supports genetic counseling, and broadens treatment options.
  • For example, supplementing amino acids has shown positive effects on patients with deficiencies in aminoacyl-tRNA synthetases (ARSs), improving both biochemical and clinical outcomes.
View Article and Find Full Text PDF

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes.

View Article and Find Full Text PDF

The myriad of available hepatocyte in vitro models provides researchers the possibility to select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of hepatocyte models is currently challenging. We systematically searched the literature and compared different HLCs, but reported functions were limited to a small subset of hepatic functions.

View Article and Find Full Text PDF

Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks.

View Article and Find Full Text PDF

Mitochondrial trifunctional protein (MTP) is involved in long-chain fatty acid β-oxidation (lcFAO). Deficiency of one or more of the enzyme activities as catalyzed by MTP causes generalized MTP deficiency (MTPD), long-chain hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), or long-chain ketoacyl-CoA thiolase deficiency (LCKATD). When genetic variants result in thermo-sensitive enzymes, increased body temperature (e.

View Article and Find Full Text PDF

Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is included in many newborn screening (NBS) programs. Acylcarnitine-based NBS for LCHADD not only identifies LCHADD, but also the other deficiencies of the mitochondrial trifunctional protein (MTP), a multi-enzyme complex involved in long-chain fatty acid β-oxidation. Besides LCHAD, MTP harbors two additional enzyme activities: long-chain enoyl-CoA hydratase (LCEH) and long-chain ketoacyl-CoA thiolase (LCKAT).

View Article and Find Full Text PDF

For liver transplantations, human leukocyte antigen (HLA) matching is not routinely performed because observed effects have been inconsistent. Nevertheless, long-term liver transplantation outcomes remain suboptimal. The availability of a more precise HLA-matching algorithm, Predicted Indirectly Recognizable HLA Epitopes II (PIRCHE-II), now enables robust assessment of the association between HLA matching and liver transplantation outcomes.

View Article and Find Full Text PDF

With the development of organoids as three-dimensional model organs it is now possible to mimic the growth of human organs in a culture dish. As these model organs can be generated from patients' (diseased) tissue and capture the (genetic) properties thereof, they are more representative disease models than cell lines and animal models. The use of organoids in pathophysiological research has already increased our understanding of many human diseases.

View Article and Find Full Text PDF

Lipid Nanoparticles (LNPs) are a promising drug delivery vehicle for clinical siRNA delivery. Modified mRNA (modRNA) has recently gained great attention as a therapeutic molecule in cardiac regeneration. However, for mRNA to be functional, it must first reach the diseased myocardium, enter the target cell, escape from the endosomal compartment into the cytosol and be translated into a functional protein.

View Article and Find Full Text PDF

The recent identification of NAA80/NAT6 as the enzyme that acetylates actins generated new insight into the process of post-translational actin modifications; however, the role of NAA80 in human physiology and pathology has not been clarified yet. We report two individuals from a single family harbouring a homozygous c.389T>C, p.

View Article and Find Full Text PDF

Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl-tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl-tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNA .

View Article and Find Full Text PDF

Purpose: Recessive cytosolic aminoacyl-tRNA synthetase (ARS) deficiencies are severe multiorgan diseases, with limited treatment options. By loading transfer RNAs (tRNAs) with their cognate amino acids, ARS are essential for protein translation. However, it remains unknown why ARS deficiencies lead to specific symptoms, especially early life and during infections.

View Article and Find Full Text PDF
Article Synopsis
  • NANS-CDG is a newly identified genetic disorder caused by mutations in a gene critical for sialic acid synthesis, leading to various developmental issues.
  • An observational study on nine patients revealed consistent symptoms such as intellectual disabilities, facial dysmorphisms, and skeletal abnormalities, along with newly observed issues like ophthalmological problems and gastrointestinal dysfunction.
  • Biochemical analysis showed elevated levels of -acetylmannosamine (ManNAc) correlate with clinical severity, and genetic screening identified novel mutations, with potential treatment showing improved development in one patient.
View Article and Find Full Text PDF