Cancer cells are known to release extracellular vesicles that often promote disease development and progression. The present study investigated the protein content and glycosylation pattern of ectosomes released in vitro by a human primary uveal melanoma Mel202 cell line. Ectosomes released by Mel202 cells were isolated from conditioned media using sequential centrifugation, and a nano-LC-MS/MS approach was used to determine their protein content.
View Article and Find Full Text PDFAims: Numerous studies confirmed the involvement of extracellular vesicles in cancer development and progression. The present study was designed to investigate the glycan composition of ectosomes derived by human cutaneous melanoma (CM) cell lines with the use of lectins.
Main Methods: Ectosomes released by primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) CM cells were isolated from conditioned media by sequential centrifugation.
Cutaneous melanoma, the most aggressive form of skin cancer, responds poorly to conventional therapy. The appearance of Tn antigen-modified proteins in cancer is correlated with metastasis and poor prognoses. The Tn determinant has been recognized as a powerful diagnostic and therapeutic target, and as an object for the development of anti-tumor vaccine strategies.
View Article and Find Full Text PDFThe objective of this study was to identify a normalizer or combination of normalizers for quantitative evaluation of the expression of a target gene of interest during melanoma progression. Adult melanocytes, uveal primary melanoma cells and cutaneous primary and metastatic melanoma cells were used to construct a panel of 14 experimental models reflecting cancer promotion and progression. Hypoxanthine phosphoribosyltransferase 1 (HPRT1), glucuronidase beta (GUSB), ribosomal protein S23 (RPS23), phosphoglycerate kinase 1 (PGK1) and small nuclear ribonucleoprotein progression.
View Article and Find Full Text PDF