Amyloid-induced toxicity is a well-known phenomenon but the molecular background remains unclear. One hypothesis relates toxicity to amyloid-membrane interactions, predicting that amyloid oligomers make pores into membranes. Therefore, the toxicity and membrane interaction of prefibrillar aggregates and individual oligomers of a non-pathological yet highly amyloidogenic protein human stefin B (cystatin B) was examined.
View Article and Find Full Text PDFHuman stefin B, from the family of cystatins, is used as a model amyloidogenic protein in studies of the mechanism of amyloid fibril formation and related cytotoxicity. Interaction of the protein's prefibrillar oligomers/aggregates with predominantly acidic phospholipid membranes is known to correlate with cellular toxicity. In the present study, we measured membrane interaction of the prefibrillar and native states for three variants: the Y31 isoform studied previously, the wild-type protein and the G4R mutant; the latter is observed in progressive myoclonus epilepsy of type 1.
View Article and Find Full Text PDFMyoclonus epilepsy of type 1 (EPM1) is a rare monogenic progressive and degenerative epilepsy, also known under the name Unverricht-Lundborg disease. With the aim of comparing their behavior in vitro, wild-type (wt) human stefin B (cystatin B) and the G4R and the R68X mutants observed in EPM1 were expressed and isolated from the Escherichia coli lysate. The R68X mutant (Arg68Stop) is a peptide of 67 amino acids from the N terminus of stefin B.
View Article and Find Full Text PDFProtein aggregation is central to most neurodegenerative diseases, as shown by familial case studies and by animal models. A modified 'amyloid cascade' hypothesis for Alzheimer's disease states that prefibrillar oligomers, also called amyloid-beta-derived diffusible ligands or globular oligomers, are the responsible toxic agent. It has been proposed that these oligomeric species, as shown for amyloid-beta, beta2-microglobulin or prion fragments, exert toxicity by forming pores in membranes, initiating a cascade of detrimental events for the cell.
View Article and Find Full Text PDFLoss of function mutations in the gene (CSTB) encoding human cystatin B, a widely expressed cysteine protease inhibitor, are responsible for a severe neurological disorder known as an Unverricht-Lundborg disease (EPM1). EPM1 had been linked to chromosome 21q22.3 in Finnish families and it is an autosomal recessive inherited disorder with a homozygous minisatellite expansion in the cystatin B gene (stefin B gene).
View Article and Find Full Text PDF