A deficiency in omega-3 fatty acids (ω3 FAs) in the brain has been correlated with cognitive impairment, learning deficiencies, and behavioral changes. In this study, we provided ω3 FAs as a supplement to spontaneously hypertensive rats (SHR+ ω3). Our focus was on examining the impact of dietary supplementation on the physicochemical properties of the brain-cell membranes.
View Article and Find Full Text PDFThe myocardium is a highly oxidative tissue in which mitochondria are essential to supply the energy required to maintain pump function. When pathological hypertrophy develops, energy consumption augments and jeopardizes mitochondrial capacity. We explored the cardiac consequences of chronic swimming training, focusing on the mitochondrial network, in spontaneously hypertensive rats (SHR).
View Article and Find Full Text PDFAlpha hemolysin of (HlyA) is a pore-forming protein, which is a prototype of the "epeat in oins" (RTX) family. It was demonstrated that HlyA-cholesterol interaction facilitates the insertion of the toxin into membranes. Putative cholesterol-binding sites, called cholesterol recognition/amino acid consensus (CRAC), and CARC (analogous to CRAC but with the opposite orientation) were identified in the HlyA sequence.
View Article and Find Full Text PDFThe synthetic peptide SmAP (KLCEKPSKTWFGNCGNPRHCG) derived from DefSm2-D defensin α-core is active at micromolar concentrations against the phytopathogenic fungus and has a multistep mechanism of action that includes alteration of the fungal cell wall and membrane permeabilization. Here, we continued the study of this peptide's mode of action and explored the correlation between the biological activity and its primary structure. Transmission electron microscopy was used to study the ultrastructural effects of SmAP in conidial cells.
View Article and Find Full Text PDFThe development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.
View Article and Find Full Text PDFThe onset of labor involves the action of multiple factors and recent reports have postulated the endocannabinoid system as a new regulator of this process. Our objective was to study the role of anandamide, one of the main endocannabinoids, on the regulation of placental molecules that contribute to the onset of labor at term. Placental samples were obtained from patients with laboring vaginal deliveries and from non-laboring elective cesarean sections.
View Article and Find Full Text PDFCationic amino acid-based surfactants are known to interact with the lipid bilayer of microorganism resulting in cell death through a disruption of the membrane topology. To elucidate the interaction of a cationic surfactant synthesized in our lab, investigations involving N-benzoyl-arginine decyl amide (Bz-Arg-NHC), and model membranes composed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were done. Bz-Arg-NHCwas able to penetrate into DPPC monolayers up to a critical pressure of 59.
View Article and Find Full Text PDFSphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved.
View Article and Find Full Text PDFOxytocin plays a pivotal role in the regulation of human parturition, however its role and modulation in the placenta is not fully understood. Non-labour cesarean section placentas were cultured with the endocannabinoid anandamide. We observed an increase in placental oxytocin receptor expression and oxytocin release.
View Article and Find Full Text PDFAlpha hemolysin (HlyA) is the major virulence factor of uropathogenic Escherichia coli (UPEC) strains. Once in circulation, a low concentration of the toxin induces an increase in intracellular calcium that activates calpains - which proteolyse cytoskeleton proteins - and also favours the exposure of phosphatidylserine (PS) in the outer leaflet of erythrocyte membranes. All these events are considered part of eryptosis, as well as the delivery of microvesicles (MVs).
View Article and Find Full Text PDFMembrane structure is a key factor for the cell`s physiology, pathology, and therapy. Evaluating the importance of lipid species such as N-nervonoyl sphingomyelin (24:1-SM) -able to prevent phase separation- to membrane structuring remains a formidable challenge. This is the first report in which polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) is applied to investigate the lipid-lipid interactions in 16:0 vs 24:1-SM monolayers and their mixtures with 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol (Chol) (DOPC/SM/Chol 2:1:1).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2018
Model biomembranes can provide valuable insights into the properties of complex biological membranes. Among several techniques, Surface Plasmon Resonance (SPR) provides a label-free analysis of the interactions of bioactive molecules with biomembranes with an experimental setup that allows mimicking biological environments. Nevertheless, protocols that enable the preparation of stable supported membrane systems with reproducible structural and functional properties on the biosensor chip are still needed.
View Article and Find Full Text PDFA novel arginine-based cationic surfactant N-benzoyl-arginine dodecylamide (Bz-Arg-NHC) was synthesized in our laboratory. In this paper we study the interaction of Bz-Arg-NHC with sheep and human red blood cells (SRBC and HRBC respectively) due to their different membrane physicochemical/biophysical properties. SRBC demonstrated to be slightly more resistant than HRBC to the hemolytic effect of the surfactant, being the micellar structure responsible for the hemolytic effect in both cases.
View Article and Find Full Text PDFUropathogenic strains of Escherichia coli produce virulence factors, such as the protein toxin alpha-hemolysin (HlyA), that enable the bacteria to colonize the host and establish an infection. HlyA is synthetized as a protoxin (ProHlyA) that is transformed into the active form in the bacterial cytosol by the covalent linkage of two fatty-acyl moieties to the polypeptide chain before the secretion of HlyA into the extracellular medium. The aim of this work was to investigate the effect of the fatty acylation of HlyA on protein conformation and protein-membrane interactions.
View Article and Find Full Text PDFWe studied the kinetics of extracellular ATP (ATPe) in and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [P]Pi released from [γ-P]ATP.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2015
Uropathogenic strains of Escherichia coli deliver the toxin alpha-hemolysin (HlyA) to optimize the host environment for the spread of infection. It was reported that at high concentrations, the toxin forms pores in eukaryotic membranes, leading to cell lysis, while lower concentrations have appeared to interfere with host-cell-signaling pathways causing cell death by apoptosis. Nevertheless, what is not clear is how often HlyA reaches levels that are high enough to lyse host target cells during the course of an infection.
View Article and Find Full Text PDFThis study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO.
View Article and Find Full Text PDFα-Hemolysin (HlyA) is a protein toxin, a member of the pore-forming Repeat in Toxin (RTX) family, secreted by some pathogenic strands of Escherichia coli. The mechanism of action of this toxin seems to involve three stages that ultimately lead to cell lysis: binding, insertion, and oligomerization of the toxin within the membrane. Since the influence of phase segregation on HlyA binding and insertion in lipid membranes is not clearly understood, we explored at the meso- and nanoscale-both in situ and in real-time-the interaction of HlyA with lipid monolayers and bilayers.
View Article and Find Full Text PDFSeveral toxins that act on animal cells present different, but specific, interactions with cholesterol or sphingomyelin. In the present study we demonstrate that HlyA (α-haemolysin) of Escherichia coli interacts directly with cholesterol. We have recently reported that HlyA became associated with detergent-resistant membranes enriched in cholesterol and sphingomyelin; moreover, toxin oligomerization, and hence haemolytic activity, diminishes in cholesterol-depleted erythrocytes.
View Article and Find Full Text PDFWe have assessed that nuclear lipids from rat kidney cells are not only membrane components, but they are also found within the nucleus. The most abundant nuclear and endonuclear lipids have a high proportion of unsaturated fatty acids (n-6 series: arachidonic > linoleic), mainly esterified to PtdCho. Nuclear most abundant molecular species are 16:0-20:4, 16:0-18:2, 18:0-20:4, 18:0-18:2, and 16:0-18:1.
View Article and Find Full Text PDFalpha-Hemolysin (HlyA) is an exotoxin secreted by some pathogenic strains of Escherichia coli that causes lysis of several mammalian cells, including erythrocytes of different species. HlyA is synthesized as a protoxin, pro-HlyA, which is activated by acylation at two internal lysines Lys-563 and Lys-689. It has been proposed that pore formation is the mechanism of cytolytic activity for this toxin, as shown in experiments with whole cells, planar lipid membranes, and liposomes, but these experiments have yielded conflicting results about the structure of the pore.
View Article and Find Full Text PDFThe incorporation of exogenous fatty acids bound to L-FABP into nuclei was studied. Rat liver cell nuclei and nuclear matrices (membrane depleted nuclei) were incubated in vitro with [1-(14)C]18:0 and 20:4n-6 either free or bound to L-FABP, ATP and CoA. FA esterification in whole nuclei and endonuclear lipids was ATP-CoA-dependent, and with specificity regarding fatty acid type and lipid class.
View Article and Find Full Text PDFLipids are not only components of cell nucleus membranes, but are also found in the membrane-depleted nuclei where they fulfill special functions. We have investigated the lipid composition of membrane-depleted rat liver nuclei obtained by incubation with low Triton X-100 concentrations of 0.04% and 0.
View Article and Find Full Text PDF