Postepy Biochem
February 2007
AAA ATPases are found in all living organisms. Their common feature is the presence of a highly conserved the AAA domain referred to as AAA module that is responsible for ATP binding and hydrolysis. The AAA domain is required for proper function of AAA proteins.
View Article and Find Full Text PDFArch Biochem Biophys
December 2005
ClpB and DnaK form a bi-chaperone system that reactivates strongly aggregated proteins in vivo and in vitro. Previously observed interaction between purified ClpB and DnaK suggested that one of the chaperones might recruit its partner during substrate reactivation. We show that ClpB from Escherichia coli binds at the substrate binding site of DnaK and the interaction is supported by the N-terminal domain and the middle domain of ClpB.
View Article and Find Full Text PDFAll living organisms respond to environmental stresses, such as heat or ethanol by increasing the synthesis of a specific group of proteins termed heat shock proteins (Hsps) or stress proteins. Major Hsps are molecular chaperones and proteases. Molecular chaperones facilitate the proper folding of polypeptides, protect other proteins from inactivation, and reactivate aggregated proteins.
View Article and Find Full Text PDFBacterial heat-shock proteins, ClpB and DnaK form a bichaperone system that efficiently reactivates aggregated proteins. ClpB undergoes nucleotide-dependent self-association and forms ring-shaped oligomers. The ClpB-assisted dissociation of protein aggregates is linked to translocation of substrates through the central channel in the oligomeric ClpB.
View Article and Find Full Text PDFSubmission of wild-type Escherichia coli to heat shock causes an aggregation of cellular proteins. The aggregates (S fraction) are separable from membrane fractions by ultracentrifugation in a sucrose density gradient. In contrast, no protein aggregation was detectable in an E.
View Article and Find Full Text PDFClpB belongs to the Hsp100/Clp ATPase family. Whereas a homologue of ClpB, ClpA, interacts with and stimulates the peptidase ClpP, ClpB does not associate with peptidases and instead cooperates with DnaK/DnaJ/GrpE in an efficient reactivation of severely aggregated proteins. The major difference between ClpA and ClpB is located in the middle sequence region (MD) that is much longer in ClpB than in ClpA and contains several segments of coiled-coil-like heptad repeats.
View Article and Find Full Text PDF