Publications by authors named "Sabina I Belli"

Background: Proteases regulate pathogenesis in apicomplexan parasites but investigations of proteases have been largely confined to the asexual stages of Plasmodium falciparum and Toxoplasma gondii. Thus, little is known about proteases in other Apicomplexa, particularly in the sexual stages. We screened the Eimeria tenella genome database for proteases, classified these into families and determined their stage specific expression.

View Article and Find Full Text PDF

Apicomplexan parasites such as Eimeria maxima possess a resilient oocyst wall that protects them upon excretion in host faeces and in the outside world, allowing them to survive between hosts. The wall is formed from the contents of specialised organelles - wall-forming bodies - found in macrogametes of the parasites. The presence of dityrosine in the oocyst wall suggests that peroxidase-catalysed dityrosine cross-linking of tyrosine-rich proteins from wall-forming bodies forms a matrix that is a crucial component of oocyst walls.

View Article and Find Full Text PDF

Vaccination with proteins from gametocytes of Eimeria maxima protects chickens, via transfer of maternal antibodies, against infection with several species of Eimeria. Antibodies to E. maxima gametocyte proteins recognise proteins in the wall forming bodies of macrogametocytes and oocyst walls of E.

View Article and Find Full Text PDF

The oocyst wall of coccidian parasites is a robust structure that is resistant to a variety of environmental and chemical insults. This resilience allows oocysts to survive for long periods, facilitating transmission from host to host. The wall is bilayered and is formed by the sequential release of the contents of two specialized organelles - wall forming body 1 and wall forming body 2 - found in the macrogametocyte stage of Coccidia.

View Article and Find Full Text PDF

Iron (Fe) is an important trace element found in nearly all organisms, and is used as a cofactor in many biological reactions. One role for Fe in some invertebrates is in stabilization of extracellular matrices. The human blood fluke, Schistosoma japonicum, is responsible for significant human disease in developing and tropical nations.

View Article and Find Full Text PDF

Coccidian parasites are transmitted between hosts by the ingestion of food or water contaminated with oocysts, followed by the release of infectious sporozoites and invasion of the gastro-intestinal tract. In the external environment, sporozoites are protected from desiccation and chemical disinfection by the oocyst wall. This unique structure guarantees successful disease transmission and is as vital to the coccidian parasite as the exoskeleton is to insects--without it they would die.

View Article and Find Full Text PDF

Members of the phylum Apicomplexa are important protozoan parasites that cause some of the most serious, and in some cases, deadly diseases in humans and animals. They include species from the genus Plasmodium, Toxoplasma, Eimeria, Neospora, Cryptosporidium, Babesia and Theileria. The medical, veterinary and economic impact of these pathogens on a global scale is enormous.

View Article and Find Full Text PDF

Coccidiosis in poultry is caused by the intestinal parasite Eimeria; it causes significant financial losses to the commercial poultry industry worldwide. CoxAbic is the first commercially available subunit vaccine against coccidiosis. The vaccine consists of affinity purified sexual stage (gametocyte) antigens (APGA) isolated from Eimeria maxima.

View Article and Find Full Text PDF

EmTFP250 is a high molecular mass, asexual stage antigen from Eimeria maxima strongly associated with maternally derived immunity to this protozoan parasite in hatchling chickens. Cloning and sequence analysis has predicted the antigen to be a novel member of the thrombospondin-related anonymous protein (TRAP) family of apicomplexan parasites. Members of the TRAP family are microneme proteins and are associated with host cell invasion and apicomplexan gliding motility.

View Article and Find Full Text PDF

Histone H1 in the parasitic protozoan Leishmania is a developmentally regulated protein encoded by two genes, HIS-1.1 and HIS-1.2.

View Article and Find Full Text PDF

We have previously described a high molecular mass, asexual stage antigen from Eimeria maxima (EmTFP250), implicated as a target of maternal antibodies produced by breeding hens infected with this protozoan parasite. Following partial purification of the protein by ion exchange chromatography, N-terminal and internal peptide sequences were generated and used in the design of degenerate PCR primers. Using a rapid amplification of cDNA ends PCR-based strategy, the cDNA encoding EmTFP250 has been cloned and sequenced.

View Article and Find Full Text PDF

The oocyst wall of apicomplexan parasites protects them from the harsh external environment, preserving their survival prior to transmission to the next host. If oocyst wall formation could be disrupted, then logically, the cycle of disease transmission could be stopped, and strategies to control infection by several organisms of medical and veterinary importance such as Eimeria, Plasmodium, Toxoplasma, Cyclospora, and Neospora could be developed. Here, we show that two tyrosine-rich precursor glycoproteins, gam56 and gam82, found in specialized organelles (wall-forming bodies) in the sexual stage (macrogamete) of Eimeria maxima are proteolytically processed into smaller glycoproteins, which are then incorporated into the developing oocyst wall.

View Article and Find Full Text PDF

The sexual (macrogamete/macrogametocyte) stage antigen, GAM82, in the apicomplexan parasite Eimeria maxima, has an apparent molecular mass of 82 kDa, and has been implicated in protective immunity against coccidiosis in poultry. The gene encoding this protein, gam82, was cloned and sequenced. It is a single-copy, intronless gene, which localizes to a 2145 bp transcript, and is first detected at 130 h post-infection.

View Article and Find Full Text PDF

Gam56 (M(r) 56,000) is an antigen found in the sexual (macrogametocyte) stage of the intestinal parasite Eimeria maxima that is implicated in protective immunity. The gene (gam56) encoding this protein was cloned and sequenced. It is a single-copy, intronless gene, that localises to a 1,754 bp transcript, and is first detected at 120 h p.

View Article and Find Full Text PDF

Two immunodominant gametocyte antigens from Eimeria maxima with M(r) 56 kDa and M(r) 82 kDa have been identified previously as potential candidates for inclusion in a recombinant subunit vaccine against coccidiosis in poultry. Here, these proteins have been biochemically characterised, immunolocalised within the parasite, and sequences for their amino termini determined. These antigens co-purify by affinity chromatography suggesting an interaction with each other.

View Article and Find Full Text PDF