Publications by authors named "Sabina Coppari"

We investigated the role of histone deacetylase 4 (HDAC4) using RNA interference (RNAi) and knockout cells to specifically address its role in cell cycle progression in tumor and normal cells. Ablation of HDAC4 led to growth inhibition in human tumor cells but not to detectable effects in normal human dermal fibroblasts (NHDF) or myelopoietic progenitors. HDAC4-/+ or HDAC4-/- murine embryonic fibroblasts showed no detectable growth defects.

View Article and Find Full Text PDF

The protein ERp57/GRP58 is a member of the protein disulfide isomerase family and is also a glucose-regulated protein, which, together with the other GRPs, is induced by a variety of cellular stress conditions. ERp57/GRP58 is mainly located in the endoplasmic reticulum (ER), but has also been found in the cytoplasm and in the nucleus, where it can bind DNA. In order to identify a possible correlation between the stress-response and the nuclear location of ERp57/GRP58, its binding sites on DNA in HeLa cells have been searched by chromatin immunoprecipitation and cloning of the immunoprecipitated DNA fragments.

View Article and Find Full Text PDF

STAT3 has been found constitutively activated in M14 melanoma cell line, as previously found in other melanoma cells. Using EMSA, DNA affinity experiments, and chromatin immunoprecipitation, STAT3 was found in M14 to bind the alpha2-macroglobulin gene enhancer in association with the protein disulfide isomerase isoform ERp57. The two proteins have also been found to be associated when bound to the SIE sequence in HepG2 cells stimulated by IL-6.

View Article and Find Full Text PDF

Protein disulfide isomerases (PDIs) constitute a family of structurally related enzymes which catalyze disulfide bonds formation, reduction, or isomerization of newly synthesized proteins in the lumen of the endoplasmic reticulum (ER). They act also as chaperones, and are, therefore, part of a quality-control system for the correct folding of the proteins in the same subcellular compartment. While their functions in the ER have been thoroughly studied, much less is known about their roles in non-ER locations, where, however, they have been shown to be involved in important biological processes.

View Article and Find Full Text PDF

ERp57 belongs to the protein disulfide isomerases, a family of homologous proteins mainly localized in the endoplasmic reticulum and characterized by the presence of a thioredoxin-like folding domain. ERp57 is a protein chaperone with thiol-dependent protein disulfide isomerase and additional activities and recently it has been shown to be involved, in cooperation with calnexin or with calreticulin, in the correct folding of glycoproteins. However, we have demonstrated that the same protein is also present in the nucleus, mainly associated with the internal nuclear matrix fraction.

View Article and Find Full Text PDF

Protein disulfide isomerase ERp57 is localized predominantly in the endoplasmic reticulum, but is also present in the cytosol and, according to preliminary evidence, in the nucleus of avian cells. Conclusive evidence of its nuclear localization and of its interaction with DNA in vivo in mammalian cells is provided here on the basis of DNA-protein cross-linking experiments performed with two different cross-linking agents on viable HeLa and 3T3 cells. Nuclear ERp57 could also be detected by immunofluorescence in HeLa cells, where it showed an intracellular distribution clearly different from that of an homologous protein, located exclusively in the endoplasmic reticulum.

View Article and Find Full Text PDF

For the study of in vitro and in vivo DNA-protein interactions, cross-linking reactions driven by UV or formaldehyde have been frequently used, followed by standard protocols of immunoprecipitation and analysis of the DNA isolated from the complexes. Here we present a basically modified method to analyze the DNA-protein cross-linked complexes obtained by an alternative cross-linking reagent. The innovations presented here include cross-linking by cis-diamminedichloroplatinum II, a fast method to isolate DNA-protein complexes using gel-filtration chromatography, and a modified procedure to obtain specific immunocomplexes that can be analyzed either for DNA or for protein content.

View Article and Find Full Text PDF