Publications by authors named "Sabina Buntich"

Romosozumab (Romo), a humanized sclerostin antibody, is a bone-forming agent under development for treatment of osteoporosis. To examine the effects of Romo on bone quality, mature cynomolgus monkeys (cynos) were treated 4 months post- ovariectomy (OVX) with vehicle, 3 mg/kg, or 30 mg/kg Romo for 12 months, or with 30 mg/kg Romo for 6 months followed by vehicle for 6 months (30/0). Serum bone formation markers were increased by Romo during the first 6 months, corresponding to increased cancellous, endocortical, and periosteal bone formation in rib and iliac biopsies at months 3 and 6.

View Article and Find Full Text PDF

Romosozumab is a humanized immunoglobulin G monoclonal antibody that binds and blocks the action of sclerostin, a protein secreted by the osteocyte and an extracellular inhibitor of canonical Wnt signaling. Blockade of sclerostin binding to low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) allows Wnt ligands to activate canonical Wnt signaling in bone, increasing bone formation and decreasing bone resorption, making sclerostin an attractive target for osteoporosis therapy. Because romosozumab is a bone-forming agent and an activator of canonical Wnt signaling, questions have arisen regarding a potential carcinogenic risk.

View Article and Find Full Text PDF

Hu714MuXHu is a recombinant chimeric murine-human monoclonal antibody directed against interleukin-15 (IL-15), a proinflammatory cytokine associated with memory CD8+ and natural killer (NK) T-cell activation and implicated in the pathogenesis of inflammatory diseases. A pharmacokinetic-pharmacodynamic (PK/PD) model was developed to describe the NK cell count reduction in cynomolgus monkeys after treatment with Hu714MuXHu. Cynomolgus monkeys were dosed with Hu714MuXHu in three studies: as a single dose at 0.

View Article and Find Full Text PDF

Inhibition of sclerostin with sclerostin antibody (Scl-Ab) has been shown to stimulate bone formation, decrease bone resorption, and increase bone mass in both animals and humans. To obtain insight into the temporal cellular and transcriptional changes in the osteoblast (OB) lineage associated with long-term Scl-Ab treatment, stereological and transcriptional analyses of the OB lineage were performed on lumbar vertebrae from aged ovariectomized rats. Animals were administered Scl-Ab 3 or 50mg/kg/wk or vehicle (VEH) for up to 26weeks (d183), followed by a treatment-free period (TFP).

View Article and Find Full Text PDF