The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury.
View Article and Find Full Text PDFLocalized neuropathic pain can be relieved following the topical application of high-concentration capsaicin. This clinical effect is thought to be related to the temporary desensitization of capsaicin- and heat-sensitive epidermal nociceptors. The objective of the present study was to examine whether the changes in thermal sensitivity induced by high-concentration topical capsaicin can be explained entirely by desensitization of capsaicin-sensitive afferents.
View Article and Find Full Text PDFSevere spinal cord injury (SCI) results in permanent functional deficits, which despite pre-clinical advances, remain untreatable. Combinational approaches, including the implantation of bioengineered scaffolds are likely to promote significant tissue repair. However, this critically depends on the extent to which host tissue can integrate with the implant.
View Article and Find Full Text PDFSevere traumatic spinal cord injury (SCI) results in a devastating and permanent loss of function, and is currently an incurable condition. It is generally accepted that future intervention strategies will require combinational approaches, including bioengineered scaffolds, to support axon growth across tissue scarring and cystic cavitation. Previously, we demonstrated that implantation of a microporous type-I collagen scaffold into an experimental model of SCI was capable of supporting functional recovery in the absence of extensive implant-host neural tissue integration.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
November 2018
The reconstruction of peripheral nerve injuries is clinically challenging, and today, the autologous nerve transplantation is still considered as the only gold standard remedy for nerve lesions where a direct nerve coaptation is not possible. Nevertheless, the functional merits of many biomaterials have been tested as potential substitutes for the autologous nerve transplant. One of the strategies that have been pursued is the combination of bioengineered nerve guides with cellular enrichment.
View Article and Find Full Text PDFMany new strategies for the reconstruction of peripheral nerve injuries have been explored for their effectiveness in supporting nerve regeneration. However only a few of these materials were actually clinically evaluated and approved for human use. This open, mono-center, non-randomized clinical study summarizes the 12-month follow-up of patients receiving reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix.
View Article and Find Full Text PDFThe implantation of bioengineered scaffolds into lesion-induced gaps of the spinal cord is a promising strategy for promoting functional tissue repair because it can be combined with other intervention strategies. Our previous investigations showed that functional improvement following the implantation of a longitudinally microstructured collagen scaffold into unilateral mid-cervical spinal cord resection injuries of adult Lewis rats was associated with only poor axon regeneration within the scaffold. In an attempt to improve graft-host integration as well as functional recovery, scaffolds were seeded with highly enriched populations of syngeneic, olfactory bulb-derived ensheathing cells (OECs) prior to implantation into the same lesion model.
View Article and Find Full Text PDFEur J Neurosci
February 2016
Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998).
View Article and Find Full Text PDFAutologous nerve transplantation (ANT) is the clinical gold standard for the reconstruction of peripheral nerve defects. A large number of bioengineered nerve guides have been tested under laboratory conditions as an alternative to the ANT. The step from experimental studies to the implementation of the device in the clinical setting is often substantial and the outcome is unpredictable.
View Article and Find Full Text PDFA variety of new bioartificial nerve guides have been tested preclinically for their safety and nerve regeneration supporting properties. So far, only a limited number of biomaterials have been tested in humans since the step from preclinical work to a clinical application is challenging. We here present an in vitro model with human Schwann cells (hSCs) as an intermediate step towards clinical application of the nerve guide Perimaix, a collagen-based microstructured 3D scaffold containing numerous longitudinal guidance channels for directed axonal growth.
View Article and Find Full Text PDF