Magnetic nanoparticles (MNPs) have gained significant attention among several nanoscale materials during the last decade due to their unique properties. These properties make them successful nanofillers for drug delivery and a number of new biomedical applications. MNPs are more useful when combined with biodegradable polymers.
View Article and Find Full Text PDFClass F South African coal fly ash was used as a precursor for the synthesis of zeolite A via complete microwave irradiation. To attain optimal conditions for the synthesis of zeolite A with minimum impurities, the microwave synthesis time, irradiation power, and Si/Al ratio were varied. Sodalite with fly ash phases were obtained when the Si/Al ratio in the coal fly ash was not adjusted and when the microwave irradiated coal fly ash slurry was used instead of the extract solution.
View Article and Find Full Text PDFThis work presents smart pathways to enhance the photocatalytic activity of TiO co-doping with fluorine (F) and platinum (Pt) to form F-Pt co-doped TiO photocatalysts and investigates the unique and unusual fluorination of the floated products. Our investigations indicate that the crystalline structure of the photocatalysts was a mixture of anatase and brookite phases and that the nanoparticles of the synthesized nanocomposites had nanometric sizes (4-25 nm). The F-Pt co-doped TiO nano-photocatalysts demonstrated degradation of sulfamethoxazole (SMX) drug of >93% within 90 min under direct solar light and 58% degradation within 360 min under a solar simulator.
View Article and Find Full Text PDFThis work describes the development of novel electrospun nanofibrous membranes (ENMs) prepared by embedding graphene oxide quantum dots (GOQDs) into poly (ether) sulfone (PES). FTIR and Raman spectroscopy confirmed the successful incorporation of the GOQDs into the PES membranes. The optimal electrospinning polymer concentration that showed no defects or bead formation was at 26 wt% of the PES polymer.
View Article and Find Full Text PDFZeolites synthesized from biomass waste materials offer a great opportunity in the sustainable utilization of the waste. In this work, energy-efficient processes ( microwave and ultrasound irradiation) were used to synthesize pure phase sodalite (zeolite) from coal fly ash obtained from a power plant in South Africa. The pure-phase sodalite was obtained with a comparatively higher surface area (16 m g) and cation exchange capacity (2.
View Article and Find Full Text PDFNitrogen-doped graphene oxide (NGO) nanosheets were prepared via a facile one-pot modified Hummer's approach at low temperatures using graphite powder and flakes as starting materials in the presence of a nitrogen precursor. It was found that the morphology, structure, composition and surface chemistry of the NGO nanosheets depended on the nature of the graphite precursor used. GO nanosheets doped with nitrogen atoms exhibited a unique structure with few thin layers and wrinkled sheets, high porosity and structural defects.
View Article and Find Full Text PDFThis paper reports on the synthesis and use of nanostructures of gallium nitride (GaN NSs) and nitrogen doped carbon spheres (NCSs) as support materials for the hydrogenation of cinnamaldehyde. This study provides the first investigation of GaN as a catalyst support in hydrogenation reactions. The GaN NSs were synthesized via chemical vapour deposition (CVD) in a double stage furnace (750 degrees C) while NCSs were made by CVD in a single stage furnace (950 degrees C) respectively.
View Article and Find Full Text PDFWe investigate the chemical sensing behavior of composites prepared with polyvinyl alcohol and carbon materials (undoped multiwalled carbon nanotubes, nitrogen-doped multiwalled carbon nanotubes and carbon nanocoils). We determine the sensitivity of thin films of these composites for ethanol, methanol and toluene vapor, comparing their conductance and capacitance responses. The composite that exhibits highest sensitivity depends on specific vapor, vapor concentration and measured electrical response, showing that the interactivity of the carbon structure with chemical species depend on structural specificities of the carbon structure and doping.
View Article and Find Full Text PDFWe report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNTs) with > 95% purity were synthesized over a Fe-Co/CaCO3 catalyst using chemical vapour deposition (CVD). Both the CNT yield and the outer diameters increased with time on line in the presence of acetylene. More significantly, the tubes were reduced in length and became stub-like with time.
View Article and Find Full Text PDF