Publications by authors named "Sabarathinam Chidambaram"

Understanding the major factors influencing groundwater chemistry and its evolution in irrigation areas is crucial for efficient irrigation management. Major ions and isotopes (δD-HO together with δO-HO) were used to identify the natural and anthropogenic factors contributing to groundwater salinization in the shallow aquifer of the Wadi Guenniche Plain (WGP) in the Mediterranean region of Tunisia. A comprehensive geochemical investigation of groundwater was conducted during both the low irrigation season (L-IR) and the high irrigation season (H-IR).

View Article and Find Full Text PDF

Identifying factors contributing to water salinity is paramount in efficiently managing limited water resources in arid environments. The primary objective of this study is to enhance understanding regarding the hydrochemistry, source, and mechanism of water salinity, as well as to assess the suitability of water for various uses in southern Iraq. The groundwater samples were collected from water wells and springs and analyzed for major cations and anions along with stable isotopes (δO and δH) to accomplish the objective.

View Article and Find Full Text PDF

Reports on Groundwater level variations and quality changes have been a critical issue, especially in arid regions. An attempt has been made in this study to determine the surface manifestations of groundwater variations through processing imageries for determining the changes in land use, Normalized Differential Building Index (NDBI), Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), along with Groundwater level (GWL) and Electrical conductivity (EC). Decadal variation between these parameters for 2013 and 2023 shows that the average water level had increased by 1.

View Article and Find Full Text PDF

Farm-scale desalination units are gaining popularity for agricultural irrigation in arid countries, such as Kuwait to meet freshwater demands. However, less attention has been given to the management of environmentally hazardous brine reject water they produce. In this study we investigated the fate of brine water produced by the inland desalination units on the underlying aquifers using numerical modelling and field investigations.

View Article and Find Full Text PDF

Due to its toxicity effect, treating toxic pollutants discharged from textile effluent is challenging for living beings. In the present study, the comparative biosorption potential of imidazolium-based ionic liquid-treated (ILPJS) and untreated (PJS) was investigated for the removal of toxic pollutant, malachite green (MG) from aqueous solution. The textural, surface morphology, and functional analysis of ILPJS and PJS were examined using BET (Brunauer-Emmett-Teller) analysis, SEM (Scanning electron microscopy) analysis, and FTIR (Fourier-transform infrared spectroscopy) analysis.

View Article and Find Full Text PDF

The current study aims to investigate the spatiotemporal distribution of microplastics (MPs) in the Miri coast, targeting their occurrences, characterisation, and potential sources. For a periodical study, coastal sediments were collected from three different time intervals (monsoon, post-monsoon, and post-COVID) and subjected to stereomicroscope, ATR-FTIR, and SEM-EDX analyses. These results show a significant increase of MPs in post-COVID samples by approximately 218% and 148% comparatively with monsoon and post-monsoon samples, respectively.

View Article and Find Full Text PDF

A comprehensive geochemical study was conducted in the Sibuti River estuary by considering water, suspended solids (SS), and sediment samples from 36 stations during southwest monsoon (SWM) and northeast monsoon (NEM). In this study, the distribution of in situ parameters, major ions, nutrients, trace metals, and isotopes (δD, δO) were analyzed in water samples, whereas sediments and SS were studied for trace metals. The distribution revealed that suspended solids were the major carrier of Cd, Zn, and Mn, whereas sediments worked as a major source of Co, Cr, Ba, Se, Cu, and Pb.

View Article and Find Full Text PDF

The rainwater chemistry encompasses the signatures of geogenic and anthropogenic processes along the regional air mass movement apart from the local sources. The predominance of dust events and anthropogenic emissions in arid regions facilitate new particle formation. Further, rain events of different seasons depict moisture sources from diverse regions reflecting variation in the regional geochemistry with respect to seasons.

View Article and Find Full Text PDF

Coastal aquifer is a fragile environment due to the interaction of groundwater with seawater, especially in arid environments. Groundwater along Kuwait's Bay is polluted due to discharge of waste from desalination plants, power plants, and other anthropogenic activities. Earlier studies on submarine groundwater discharge in Kuwait's Bay region have reported the transfer of nutrient flux from the groundwater to Kuwait's Bay.

View Article and Find Full Text PDF

The impact of climate change could be inferred by observing long-term climate variables like temperature, precipitation, and evapotranspiration. A local study on the climatic factors such as temperature, precipitation, CO emissions, and population was carried out. The temperature records of the study period reflected an increase of 1.

View Article and Find Full Text PDF

In this article, strontium distribution in sedimentary coastal aquifers of Eastern India was studied and its association with groundwater particles has been ascertained using hydrochemical and morphological tools. Groundwater contains Sr in the range of 0.08-4.

View Article and Find Full Text PDF

Kuwait Group aquifers and Dammam Formation are the two prominent aquifers, the wells tapping Dammam Formation and Dual completion wells are used for groundwater production. The current study investigates the spatiotemporal evolution of hydrochemical characteristics of the Shagaya water field utilizing long-term (1975-2019) hydrochemical data from 116 water wells. The Shagaya water well field has been differentiated into A to F sub-Fields.

View Article and Find Full Text PDF

The extraction of mountain salt from the saline waters is the basic livelihood of the Ba'kelalan communities of Sarawak. The current integrated approach is the first attempt to study the sources and geochemical processes of the saline groundwaters in this mountain region. Hence, in this study, saline groundwater samples from five existing wells in different seasons were analysed for hydrochemical parameters and multi-isotope composition (δO, δD, δS, δB and δCl).

View Article and Find Full Text PDF

Water quality degradation and metal contamination in groundwater are serious concerns in an arid region with scanty water resources. This study aimed at evaluating the source of uranium (U) and potential health risk assessment in groundwater of the arid region of western Rajasthan and northern Gujarat. The probable source of vanadium (V) and fluorine (F) was also identified.

View Article and Find Full Text PDF

The dynamics of the coastal aquifers are well-expressed by geochemical and isotopic signatures. Coastal regions often exhibit complex groundwater recharge pattern due to the influence of depression in the Bay of Bengal, tidal variations on surface waters, saline water intrusion and agricultural return flows. In this research, groundwater recharge processes occurring in coastal Tamil Nadu, South India were evaluated using major ion chemistry and environmental isotopes.

View Article and Find Full Text PDF

The study aims to determine the impact of global meteorological parameters on SARS-COV-2, including population density and initiation of lockdown in twelve different countries. The daily trend of these parameters and COVID-19 variables from February 15th to April 25th, 2020, were considered. Asian countries show an increasing trend between infection rate and population density.

View Article and Find Full Text PDF

The accurate evaluation of groundwater contamination vulnerability is essential for the management and prevention of groundwater contamination in the watershed. In this study, advanced multiple machine learning (ML) models of Radial Basis Neural Networks (RBNN), Support Vector Regression (SVR), and ensemble Random Forest Regression (RFR) were applied to determine the most accurate performance for the evaluation of groundwater contamination vulnerability. Eight vulnerability factors of DRASTIC-L were rated based on the modified DRASTIC model (MDM) and were used as input data.

View Article and Find Full Text PDF

In this work, sediments collected from a 150-m deep litho-section of a coastal region and encompassing Quaternary, Tertiary and Cretaceous sedimentary formations were studied for arsenic distribution and other trace and redox sensitive elements. Arsenic concentration in the sediments is found to vary from <0.5 to 30 mg·kg and showed an increasing trend with the depth.

View Article and Find Full Text PDF

Unlabelled: This study aims to explore the state-wise assessment of SARS-CoV-2 (COVID-19) pandemic spread in Malaysia with focus on influence of meteorological parameters and air quality. In this study, state-wise COVID-19 data, meteorological parameters and air quality index (AQI) were collected from March 13 to April 30, 2020, which encompass three movement control order (MCO) periods in the country. Overall, total infected cases were observed to be higher in MCO phase 1 and 2 and significantly reduced in MCO phase 3.

View Article and Find Full Text PDF

Uranium (U) in groundwater is hazardous to human health, especially if it is present in drinking water. The semiarid regions of southern India chiefly depend on groundwater for drinking purposes. In this regard, a comprehensive sampling strategy was adopted to collect groundwater representing different lithologies of the region.

View Article and Find Full Text PDF

The present investigation has been carried out in the Ottapidaram taluk to evaluate the suitability of groundwater for drinking purposes and to assess the non-carcinogenic health risks. Twenty groundwater samples were collected, and the major physicochemical parameters were measured along with the heavy metals lead (Pb) and chromium (Cr). The analyzed anions and cations follow the average dominance order, Cl  > PO  > SO  > NO  > F, and Mg  > Ca  > Na  > K, respectively.

View Article and Find Full Text PDF

The enhanced assessment of groundwater contamination vulnerability is necessary for the management and conservation of groundwater resources because groundwater contamination has been much increased continuously in the world by anthropogenic origin. The purpose of this study is to determine the best model among three ANFIS-MOA models (the adaptive neuro-fuzzy inference system (ANFIS) combined with metaheuristic optimization algorithms (MOAs) such as genetic algorithm (GA), differential evolution algorithm (DE) and particle swarm optimization (PSO)) in assessing groundwater contamination vulnerability at a nitrate contaminated area. The Miryang City of South Korea was selected as the study area because the nitrate contamination was widespread in the city with two functions of urban and rural activities.

View Article and Find Full Text PDF

The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation.

View Article and Find Full Text PDF