Publications by authors named "Saba Aslani"

Enantioseparation of -hydroxy acids is essential since specific enantiomers of these compounds can be used as disease biomarkers for diagnosis and prognosis of cancer, brain diseases, kidney diseases, diabetes, etc., as well as in the food industry to ensure quality. HPLC methods were developed for the enantioselective separation of 11 -hydroxy acids using a superficially porous particle-based teicoplanin (TeicoShell) chiral stationary phase.

View Article and Find Full Text PDF

Deuterium substitution provides various benefits in drug molecules, including improvement in pharmacokinetic properties, reduction of toxicity, reduction of epimerization, etc. Also, it has been shown that the position of deuterium substitution affects the properties of drug molecules. Therefore, it is important to study low molecular weight deuterated isotopologues which constitute the deuterated pool and are building blocks of larger deuterated molecules.

View Article and Find Full Text PDF

Gas chromatography has always been a simple and widely used technique for the separation of volatile compounds and their quantitation. However, the common detectors used with this technique are mostly universal and do not provide any specific qualitative information. There have been some attempts to combine the separation power of GC with the qualitative capabilities of "high-information" spectroscopic techniques including infrared spectroscopy, nuclear magnetic resonance spectroscopy, molecular rotational resonance spectroscopy, and vacuum ultraviolet spectroscopy.

View Article and Find Full Text PDF

Superficially porous silica bonded with macrocyclic glycopeptides can separate enantiomers in various chromatographic formats, including normal phase liquid chromatography (NPLC). The conventional wisdom in NPLC is to avoid intentionally adding water in the eluents. Herein we examine the effects of small quantities of water as an additive on chiral separations in NPLC with the n-hexane-ethanol system.

View Article and Find Full Text PDF

Brain organoids are three-dimensional, tissue-engineered neural models derived from induced pluripotent stem cells that enable studies of neurodevelopmental and disease processes. Mechanical properties of the microenvironment are known to be critical parameters in tissue engineering, but the mechanical consequences of the encapsulating matrix on brain organoid growth and development remain undefined. Here, Matrigel was modified with an interpenetrating network (IPN) of alginate, to tune the mechanical properties of the encapsulating matrix.

View Article and Find Full Text PDF

A next-generation gas chromatograph-molecular rotational resonance (MRR) spectrometer (GC-MRR) with instrumental improvements and higher sensitivity is described. MRR serves as a structural information-rich detector for GC with extremely narrow linewidths and capabilities surpassing H nuclear magnetic resonance/Fourier transform infrared spectroscopy/mass spectrometry (MS) while offering unparalleled specificity in regard to a molecule's three-dimensional structure. With a Fabry-Pérot cavity and a supersonic jet incorporated into a GC-MRR, dramatic improvements in sensitivity for molecules up to 244 Da were achieved in the microwave region compared to the only prior work, which demonstrated the GC-MRR idea for the first time with millimeter waves.

View Article and Find Full Text PDF

The separation of deuterated compounds from their protiated counterparts is essential in areas of drug discovery and development, investigating kinetic isotope effects and quantitative methods of non-mass spectrometry-based stable isotope dilution assay (non-MS SIDA). The separations of 47 isotopologue pairs of common compounds and drugs were achieved by gas-liquid chromatography, employing twelve different stationary phases. Polydimethylsiloxane phase, phenyl substituted polydimethylsiloxane phases, wax phases, ionic liquid phases, and chiral stationary phases were selected to encompass a wide polarity range and diverse chemical interactions.

View Article and Find Full Text PDF

Cardiovascular diseases, among all diseases, are taking the most victims worldwide. Coronary artery occlusion, takes responsibility of about 30% of the yearly global deaths in the world (Heart Disease and Stroke Statistics 2017 At-a-Glance, 2017), raising the need for viable substitutes for cardiovascular tissues. Depending on a number of factors, blocked coronary arteries are now being replaced by autografts or stents.

View Article and Find Full Text PDF

As the incidence of small-diameter vascular graft (SDVG) occlusion is considerably high, a great amount of research is focused on constructing a more biocompatible graft. The absence of a biocompatible surface in the lumen of the engineered grafts that can support confluent lining with endothelial cells (ECs) can cause thrombosis and graft failure. Blood clot formation is mainly because of the lack of an integrated endothelium.

View Article and Find Full Text PDF