Publications by authors named "Saavedra-Lopez E"

Neuroinflammation contributes to neuronal degeneration in Parkinson's disease (PD). However, how brain inflammatory factors mediate the progression of neurodegeneration is still poorly understood. Experimental models of PD have shed light on the understanding of this phenomenon, but the exploration of inflammation-driven models is necessary to better characterize this aspect of the disorder.

View Article and Find Full Text PDF

The cellular complexity of glioblastoma microenvironments is still poorly understood. In-depth, cell-resolution tissue analyses of human material are rare but highly necessary to understand the biology of this deadly tumor. Here we present a unique 3D visualization revealing the cellular composition of human GBM in detail and considering its critical association with the neo-vascular niche.

View Article and Find Full Text PDF

Hypoxic pseudopalisades are a pathological hallmark of human glioblastoma, which is linked to tumour malignancy and aggressiveness. Yet, their function and role in the tumour development have scarcely been explored. It is thought that pseudopalisades are formed by malignant cells escaping from the hypoxic environment, although evidence of the immune component of pseudopalisades has been elusive.

View Article and Find Full Text PDF

T cells effectively explore the tissue in search for antigens. When activated, they dedicate a big amount of energy and resources to arrange a complex structure called immunological synapse (IS), containing a particular distribution of molecules defined as supramolecular activation clusters (SMACs), and become polarized toward the target cell in a manner that channels the information specifically. This arrangement is symmetrical and requires the polarization of the MTOC and the Golgi to be operational, especially for the proper delivery of lytic granules and the recycling of molecules three dimensionally segregated at the clustered interface.

View Article and Find Full Text PDF

Since the proper activation of T cells requires the physical interaction with target cells through the formation of immunological synapses (IS), an alteration at this level could be a reason why tumors escape the immune response. As part of their life cycle, it is thought that T cells alternate between a static phase, the IS, and a dynamic phase, the immunological kinapse (IK), depending on high or low antigen sensing. Our investigation performed in tissue samples of human glioma shows that T cells are able to establish synapsing interactions not only with glioma tumorigenic cells, but also with stromal myeloid cells.

View Article and Find Full Text PDF

In this chapter, we describe the technical details to visualize and analyze effector immunological synapses between T cells and astrocytes in the brain with high-resolution confocal imaging. This procedure is critical for the optimal and even penetration of labeling antibodies within the nerve tissue to obtain accurate staining and allow a uniform three-dimensional analysis of the T cell-astrocyte interactions. We emphasize here the comprehensive exploration of the tissue and analysis with confocal microscope as well as the display of microanatomical details of the three-dimensional reconstruction for interface visualization (including peripheral and central supramolecular activation clusters, effector molecules, and other organelles such as microtubule organizing centers (MTOCs) and Golgi apparatus).

View Article and Find Full Text PDF