Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight.
View Article and Find Full Text PDFWe investigated secondary organic aerosol (SOA) from β-caryophyllene oxidation generated over a wide tropospheric temperature range (213-313 K) from ozonolysis. Positive matrix factorization (PMF) was used to deconvolute the desorption data (thermograms) of SOA products detected by a chemical ionization mass spectrometer (FIGAERO-CIMS). A nonmonotonic dependence of particle volatility (saturation concentration at 298 K, ) on formation temperature (213-313 K) was observed, primarily due to temperature-dependent formation pathways of β-caryophyllene oxidation products.
View Article and Find Full Text PDFThe Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud expansion chamber with a volume of 84 m was extended for the small cloud expansion chamber AIDA mini (AIDAm) with a volume of 20 L. AIDAm is located in the cold room of AIDA and can perform automated ice-nucleation measurements over longer time periods of hours to days. AIDAm samples from the AIDA chamber, which acts as a reservoir of atmospheric aerosol types, which can slowly be modified by physical or chemical processes similar to those occurring in the atmosphere.
View Article and Find Full Text PDFWe describe a new tunable diode laser (TDL) absorption instrument, the Chicago Water Isotope Spectrometer, designed for measurements of vapor-phase water isotopologues in conditions characteristic of the upper troposphere [190-235 K temperature and 2-500 parts per million volume (ppmv) water vapor]. The instrument is primarily targeted for measuring the evolving ratio of HDO/HO during experiments in the "Aerosol Interaction and Dynamics in the Atmosphere" (AIDA) cloud chamber. The spectrometer scans absorption lines of both HO and HDO near the 2.
View Article and Find Full Text PDFReactions of volatile organic compounds (VOC) with NO radicals and of reactive intermediates of oxidized VOC with NO can lead to the formation of highly functionalized organonitrates (ON). We present quantitative and chemical information on ON contributing to high night-time organic aerosol (OA) mass concentrations measured during July-August 2016 in a rural area in southwest Germany. A filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-HR-ToF-CIMS) was used to analyze the molecular composition of ON in both the gas and particle phase.
View Article and Find Full Text PDFThe stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (-40 °C), conditions necessary to form cirrus clouds in the Earth's atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) 19:122-127].
View Article and Find Full Text PDFChromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine.
View Article and Find Full Text PDFSingle-particle time-of-flight mass spectrometry has now been used since the 1990s to determine particle-to-particle variability and internal mixing state. Instruments commonly use 193 nm excimer or 266 nm frequency-quadrupled Nd:YAG lasers to ablate and ionize particles in a single step. We describe the use of a femtosecond laser system (800 nm wavelength, 100 fs pulse duration) in combination with an existing single-particle time-of-flight mass spectrometer.
View Article and Find Full Text PDFThe mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.
View Article and Find Full Text PDFWe have developed an approach for directly isolating an intact multi-protein chromatin remodeling complex from mammalian cell extracts using synthetic peptide affinity reagent 4. FOG1(1-15), a short peptide sequence known to target subunits of the nucleosome remodeling and deacetylase (NuRD) complex, was joined via a 35-atom hydrophilic linker to the StreptagII peptide. Loading this peptide onto Streptactin beads enabled capture of the intact NuRD complex from MEL cell nuclear extract.
View Article and Find Full Text PDFBackground: Investigations on adverse biological effects of nanoparticles (NPs) in the lung by in vitro studies are usually performed under submerged conditions where NPs are suspended in cell culture media. However, the behaviour of nanoparticles such as agglomeration and sedimentation in such complex suspensions is difficult to control and hence the deposited cellular dose often remains unknown. Moreover, the cellular responses to NPs under submerged culture conditions might differ from those observed at physiological settings at the air-liquid interface.
View Article and Find Full Text PDFPotential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2012
The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties.
View Article and Find Full Text PDFThe absolute rate coefficient for the reaction of alpha-pinene with ozone was determined in the temperature range between 243 K and 303 K at atmospheric pressure. In total, 30 experiments were performed in the large (85 m3) temperature-controlled simulation chamber AIDA, where the concentrations of the reactants ozone and alpha-pinene were measured directly. An Arrhenius expression for the alpha-pinene + ozone reaction was derived with a pre-exponential factor of (1.
View Article and Find Full Text PDFComplex refractive indices for supercooled sulfuric acid solution droplets in the mid-infrared spectral regime (wavenumber range 6000-800 cm(-1)) have been retrieved for acid concentrations ranging from 33 to 10 wt % H2SO4 at temperatures between 235 and 230 K, from 36 to 15 wt % H2SO4 at temperatures between 225 and 219 K, and from 37 to 20 wt % H2SO4 at temperatures between 211 and 205 K. The optical constants were derived with a Mie inversion technique from measured H2SO4/H2O aerosol extinction spectra that were recorded during controlled expansion cooling experiments in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. The new data sets cover a range of atmospherically relevant temperatures and compositions in the binary sulfuric acid/water system for which infrared refractive indices have not been published so far, namely, the regime when supercooled H2SO4/H2O solution droplets at T < 235 K are subjected to an environment that is supersaturated with respect to the ice phase.
View Article and Find Full Text PDFAnasthesiol Intensivmed Notfallmed Schmerzther
November 2007
In Germany the economical framework of the health system in general and the hospitals in particular has changed dramatically over the last years. The conversion of funding to DRGs has implicated a reduction of budgets. The apportioning of budgets by keys of officially calculating hospitals forces single departments and disciplines to choose financial goals of a hospital as their particular interest and not the financial goals of a department.
View Article and Find Full Text PDFWe have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes.
View Article and Find Full Text PDFThe mechanism of the formation of supercooled ternary H(2)SO(4)/H(2)O/HNO(3) solution (STS) droplets in the polar winter stratosphere, i.e., the uptake of nitric acid and water onto background sulfate aerosols at T < 195 K, was successfully mimicked during a simulation experiment at the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe.
View Article and Find Full Text PDFComplex refractive indices of supercooled liquid water have been retrieved at 269, 258, 252, and 238 K in the 4500-1100 cm(-1) wavenumber regime from series of infrared extinction spectra of micron-sized water droplets. The spectra collection was recorded during expansion experiments in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. A Mie inversion technique was applied to derive the low-temperature refractive index data sets by iteratively adjusting the room-temperature optical constants of liquid water until obtaining the best agreement between measured and calculated infrared spectra of the supercooled water droplets.
View Article and Find Full Text PDFIn situ Fourier transform infrared (FTIR) extinction spectra of airborne alpha-NAD microparticles generated by two different methods were recorded in the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. The extinction spectrum of alpha-NAD crystals obtained by shock freezing of a HNO3/H2O gas mixture could be accurately reproduced using Mie theory with published refractive indices of alpha-NAD as input. In contrast, Mie theory proved to be inadequate to properly reproduce the infrared extinction spectrum of alpha-NAD crystals which were formed via homogeneous nucleation of supercooled HNO3/H2O solution droplets, evaporating slowly on a time scale of several hours at about 195 K.
View Article and Find Full Text PDFIntraaortic balloon counterpulsation (IABP) was employed between 1977 and 1988 in 132 patients (37 women and 95 men; mean age 60 +/- 9.9 years) with coronary heart disease. Indications for IABP were cardiogenic shock in 93, markedly impaired left ventricular function in 13, and treatment-refractory angina in 26.
View Article and Find Full Text PDF