We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).
View Article and Find Full Text PDFHuman umbilical vein endothelial cells (HUVECs) play a fundamental role in angiogenesis. Herein, we introduce digital holographic microscopy (DHM) for the 3D quantitative morphological analysis of HUVECs in extracellular matrix (ECM)-based biomaterials as an angiogenesis model. The combination of volumetric information from DHM and the physicochemical and cytobiocompatibility data provided by fluorescence microscopy and cytology offers a comprehensive understanding of the angiogenesis-related parameters of HUVECs within the ECM.
View Article and Find Full Text PDFHyperactivity in children with attention-deficit/hyperactivity disorder (ADHD) leads to restlessness and impulse-control impairments. Nevertheless, the relation between ADHD symptoms and brain regions interactions remains unclear. We focused on dynamic causal modeling to study the effective connectivity in a fully connected network comprised of four regions of the default mode network (DMN) (linked to response control behaviors) and four other regions with previously-reported structural alterations due to ADHD.
View Article and Find Full Text PDFMicrofluidic systems are capable of producing microgels with a monodisperse size distribution and a spherical shape due to their laminar flow and superior flow. A significant challenge in producing these drug-carrying microgels is simultaneous drug loading into microgels. Various factors such as the type of polymer, the type of drug, the volume ratio of the drug to the polymer, and the geometry of the microfluidic system used to generate microgels can effectively address these challenges.
View Article and Find Full Text PDFUnlabelled: Microfluidic systems with the ability to mimic the female reproductive tract (FRT) and sperm features have emerged as promising methods to separate sperm with higher quality for the assistant reproductive technology. Thereby, we designed and fabricated a microfluidic system based on FRT features with a focus on rheotaxis and thigmotaxis for passive sperm separation. In this regard, four various geometries (linear, square, zigzag, and sinusoidal) were designed, and the effect of rheotaxis and thigmotaxis were investigated.
View Article and Find Full Text PDFThe purpose of this research was to design a fully automated centrifugal microfluidic system (Lab-on-a-Disk) for isolating cell free fetal DNAs (cffDNAs) from whole blood. To achieve this goal, magnetic silica beads were used, such that after attaching cffDNA to them, they were transferred between chambers by using external fixed magnets. All the standards and required steps for cffDNA extraction including plasma separation, adding proteinase K, lysis buffer, binding buffer, washing buffer, and elution buffer were considered in this designed disk.
View Article and Find Full Text PDFDespite several progressions in the biofabrication of large-scale engineered tissues, direct biopri nting of perfusable three-dimensional (3D) vasculature remained unaddressed. Developing a feasible method to generate cell-laden thick tissue with an effective vasculature network to deliver oxygen and nutrient is crucial for preventing the formation of necrotic spots and tissue death. In this study, we developed a novel technique to directly bioprint 3D cell-laden prevascularized construct.
View Article and Find Full Text PDFPurpose: Mixing of liquids is a critical unit operation in the biopharmaceutical drug product manufacturing. It commonly consists of mixing miscible liquids to dilute bulk drug substance (DS) or pool multiple lots of drug substance. In the past, at-scale mixing studies have been conducted to determine the mixing parameters, namely mixing speed, and mixing time.
View Article and Find Full Text PDFDue to the increasing resistance to common medicinal compounds, the use of medicinal plants has received special attention. Therefore, the current survey was designed to study the antileishmanial effects of Trautv. methanolic extract against In this study, after preparing the methanolic extract of , its effect on the amastigotes of and triggering the nitric oxide (NO) were measured.
View Article and Find Full Text PDFPatients with acute burns are more vulnerable to COVID-19 because of physiologically weak immune systems. This study aimed to assess and compare individual characteristics, clinical features, and clinical outcomes of acute burn among COVID-19 and non-COVID-19 patients. A retrospective study, with data collected from 611 acute burn patients with or without a COVID-19 diagnosis referred to a burn centre in Iran.
View Article and Find Full Text PDFAim: The study aimed to develop a bicomponent bioactive hydrogel formed in situ and enriched with an extract of platelet-rich fibrin (PRFe) and to assess its potential for use in pulp-dentine complex tissue engineering via cell homing.
Methodology: A bicomponent hydrogel based on photo-activated naturally derived polymers, methacrylated chitosan (ChitMA) and methacrylated collagen (ColMA), plus PRFe was fabricated. The optimized formulation of PRFe-loaded bicomponent hydrogel was determined by analysing the mechanical strength, swelling ratio and cell viability simultaneously.
Due to the expansion of point-of-care devices, proposing a convenient and efficient method for blood-plasma separation would help with the use of point-of-care devices. Commercial microfluidic chips are only able to separate a limited amount of plasma, and the majority of these chips need an active valve system, which leads to increase manufacturing cost and complexity. In this research study, we designed a centrifugal microfluidic disk with a passive valve for ultra-accurate and efficient blood-plasma separation on a large scale (2-3 mL).
View Article and Find Full Text PDFBesides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications.
View Article and Find Full Text PDFAlthough medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices.
View Article and Find Full Text PDFThis research was conducted to determine the concentration of heavy metals (Cu, Pb, and Ni) in the sediments as well as the gill and muscle tissue of Siganus javus and two species of algae (Padina australis and Sargassum vulgare) collected from the Persian Gulf coasts of Bushehr province, which were studied using standard laboratory methods. The general form and trend of metal uptake at different stations in the gill and muscle tissue was Cu > Ni > Pb. The results of the study of metal uptake in both algae showed that the uptake of all three metals was higher in Padina species (Pb ˂ Cu ˂ Ni).
View Article and Find Full Text PDFDespite all the advancements in tissue engineering, one of the unsolved challenges is the mass transfer limitation. Therefore, the subject of pre-vascularization in the engineered tissues gets more attention to avoid necrotic core formation. In this study, we considered a design for interconnected channels with a muscle tissue-like structure, in silico and in vitro.
View Article and Find Full Text PDFBackground: Today, a suitable vaccine has not yet been discovered to prevent infection. Therefore, prophylaxis can be suggested as the preferred approach to prevent toxoplasmosis. This study aims to evaluate the prophylactic effects of synthesized zinc nanoparticles (ZnNPs) using Vera.
View Article and Find Full Text PDFFor bone tissue engineering, stem cell-based therapy has become a promising option. Recently, cell transplantation supported by polymeric carriers has been increasingly evaluated. Herein, we encapsulated human olfactory ectomesenchymal stem cells (OE-MSC) in the collagen hydrogel system, and their osteogenic potential was assessed in vitro and in vivo conditions.
View Article and Find Full Text PDFUndoubtedly, microfluidics has been a focal point of interdisciplinary science during the last two decades, resulting in many developments in this area. Centrifugal microfluidic platforms have good potential for use in point-of-care devices because they take advantage of some intrinsic forces, most notably centrifugal force, which obviates the need to any external driving forces. Herein, we introduce a newly designed detection chamber for use on microfluidic discs that can be employed as an absorbance readout step in cases where the final solution has a very low viscosity and surface tension.
View Article and Find Full Text PDFMicrofluidic on-chip production of microgels using external gelation can serve numerous applications that involve encapsulation of sensitive cargos. Nevertheless, on-chip production of microgels in microfluidic devices can be challenging due to problems induced by the rapid increase in precursor solution viscosity like clogging. Here, a novel design incorporating a step, which includes a sudden increase in cross-sectional area, before a flow-focusing nozzle was proposed for microfluidic droplet generators.
View Article and Find Full Text PDFCell lysis is the most important first step for molecular biology and diagnostic testing. Recently, microfluidic systems have attracted considerable attention due to advantages associated with automation, integration and miniaturization, especially in resource-limited settings. In this work, novel centrifugal microfluidic platforms with new configurations for chemical cell lysis are presented.
View Article and Find Full Text PDFThe present study investigates the diversification and dynamic behavior of a multi-population microfluidic microbial fuel cell (MFC) as a biosensor. The cost effective microfluidic MFC coupled to a comprehensive model, presents a novel platform for monitoring chemical and biological phenomena. The importance of competition among different microbial groups, hierarchical biochemical processes, bacterial chemotaxis and different mechanisms of electron transfer were significant considerations in the present model.
View Article and Find Full Text PDFIn this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa.
View Article and Find Full Text PDFDiabetes mellitus is a global endemic with a rapidly increasing prevalence in both developing and developed countries. Recently, hemoglobin A1c has been recommended by the American Diabetes Associations as a possible substitute for fasting blood glucose for the diagnosis of diabetes, because it is an indicator of long-term glycemic control. Also, centrifugal microfluidic systems have good potential for use in the point of care testing systems.
View Article and Find Full Text PDFBackground: Experimental work on skin hydration is technologically challenging, and mostly limited to observations where environmental conditions are constant. In some cases, like diapered baby skin, such work is practically unfeasible, yet it is important to understand potential effects of diapering on skin condition. To overcome this challenge, in part, we developed a computer simulation model of reversible transient skin hydration effects.
View Article and Find Full Text PDF