Cubic semiconductor nanowires grown along ⟨100⟩ directions have been reported to be promising for optoelectronics and energy conversion applications, owing to their pure zinc-blende structure without any stacking fault. But, until date, only limited success has been achieved in growing ⟨100⟩ oriented nanowires. Here we report the selective growth of stacking fault free ⟨100⟩ nanowires on a commercial transparent conductive polycrystalline fluorine-doped SnO (FTO) glass substrate via a simple and cost-effective chemical vapor deposition (CVD) method.
View Article and Find Full Text PDFDual-band-gap systems are promising for solar water splitting due to their excellent light-harvesting capability and high charge-separation efficiency. However, a fundamental understanding of interfacial charge-transfer behavior in the dual-band-gap configuration is still incomplete. Taking CdS/reduced graphene oxide (CdS/RGO) nanoheterojunctions as a model solar water splitting system, we attempt here to highlight the interaction-dependent interfacial charge-transfer behavior based on both experimental observations and theoretical calculations.
View Article and Find Full Text PDFThe emergence and global spread of bacterial resistance to currently available antibiotics underscore the urgent need for new alternative antibacterial agents. Recent studies on the application of nanomaterials as antibacterial agents have demonstrated their great potential for management of infectious diseases. Among these antibacterial nanomaterials, carbon-based nanomaterials (CNMs) have attracted much attention due to their unique physicochemical properties and relatively higher biosafety.
View Article and Find Full Text PDFBecause of inefficient charge utilization caused by localized π-electron conjugation and large exciton binding energy, the photoelectrochemical water-splitting efficiency of organic polymers is seriously limited. Taking the graphitic carbon nitride (g-CN) polymer as an example, we report a novel photoanode based on a vertically aligned g-CN porous nanorod (PNR) array prepared in situ, using a thermal polycondensation approach, with anodic aluminum oxide as the template. The g-CN PNR array exhibits an excellent photocurrent density of 120.
View Article and Find Full Text PDFDesigning high-quality interfaces is crucial for high-performance photoelectrochemical (PEC) water-splitting devices. Here, we demonstrate a facile integration between polycrystalline np-Si and NiFe-layered double hydroxide (LDH) nanosheet array by a partially activated Ni (Ni/NiO) bridging layer for the excellent PEC water oxidation. In this model system, the thermally deposited Ni interlayer protects Si against corrosion and makes good contact with Si, and NiO has a high capacity of hole accumulation and strong bonding with the electrodeposited NiFe-LDH due to the similarity in material composition and structure, facilitating transfer of accumulated holes to the catalyst.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
The semiconductor/electrolyte interface plays a crucial role in photoelectrochemical (PEC) water-splitting devices as it determines both thermodynamic and kinetic properties of the photoelectrode. Interfacial engineering is central for the device performance improvement. Taking the cheap and stable hematite (α-FeO) wormlike nanostructure photoanode as a model system, we design a facile sacrificial interlayer approach to suppress the crystal overgrowth and realize Ti doping into the crystal lattice of α-FeO in one annealing step as well as to avoid the consequent anodic shift of the photocurrent onset potential, ultimately achieving five times increase in its water oxidation photocurrent compared to the bare hematite by promoting the transport of charge carriers, including both separation of photogenerated charge carriers within the bulk semiconductor and transfer of holes across the semiconductor-electrolyte interface.
View Article and Find Full Text PDF