Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice.
View Article and Find Full Text PDFBackground And Purpose: Autosegmentation techniques are emerging as time-saving means for radiation therapy (RT) contouring, but the understanding of their performance on different datasets is limited. The aim of this study was to determine agreement between rectal volumes by an existing autosegmentation algorithm and manually-delineated rectal volumes in prostate cancer RT. We also investigated contour quality by different-sized training datasets and consistently-curated volumes for retrained versions of this same algorithm.
View Article and Find Full Text PDFDesmoglein 3 (Dsg3) is an adhesion receptor in desmosomes, but its role in carcinoma cell migration and invasion is mostly unknown. Our aim was to quantitatively analyse the motion of Dsg3-modified carcinoma cells in 2D settings and in 3D within tumour microenvironment mimicking (TMEM) matrices. We tested mutant constructs of C-terminally truncated Dsg3 (∆238 and ∆560), overexpressed full-length (FL) Dsg3, and empty vector control (Ct) of buccal mucosa squamous cell carcinoma (SqCC/Y1) cells.
View Article and Find Full Text PDFKidney development depends crucially on proper ureteric bud branching giving rise to the entire collecting duct system. The transcription factor HNF1B is required for the early steps of ureteric bud branching, yet the molecular and cellular events regulated by HNF1B are poorly understood. We report that specific removal of from the ureteric bud leads to defective cell-cell contacts and apicobasal polarity during the early branching events.
View Article and Find Full Text PDFTissue, organ and organoid cultures provide suitable models for developmental studies, but our understanding of how the organs are assembled at the single-cell level still remains unclear. We describe here a novel fixed -direction (FiZD) culture setup that permits high-resolution confocal imaging of organoids and embryonic tissues. In a FiZD culture a permeable membrane compresses the tissues onto a glass coverslip and the spacers adjust the thickness, enabling the tissue to grow for up to 12 days.
View Article and Find Full Text PDFBackground: The composition of the matrix molecules is important in in vitro cell culture experiments of e.g. human cancer invasion and vessel formation.
View Article and Find Full Text PDF