Publications by authors named "Saad Harous"

Machine learning (ML) represents one of the main pillars of the current digital era, specifically in modern real-world applications. The Internet of Things (IoT) technology is foundational in developing advanced intelligent systems. The convergence of ML and IoT drives significant advancements across various domains, such as making IoT-based security systems smarter and more efficient.

View Article and Find Full Text PDF

This paper proposes a high-accuracy EEG-based schizophrenia (SZ) detection approach. Unlike comparable literature studies employing conventional machine learning algorithms, our method autonomously extracts the necessary features for network training from EEG recordings. The proposed model is a ten-layered CNN that contains a max pooling layer, a Global Average Pooling layer, four convolution layers, two dropout layers for overfitting prevention, and two fully connected layers.

View Article and Find Full Text PDF

Internet of Drones (IoD) plays a crucial role in the future Internet of Things due to its important features such as low cost, high flexibility, and mobility. The number of IoD applications is drastically increasing from military to civilian fields. Nevertheless, drones are resource-constrained and highly vulnerable to several security threats and attacks.

View Article and Find Full Text PDF

Limitations Of Available Literature: Nowadays, coronavirus disease 2019 (COVID-19) is the world-wide pandemic due to its mutation over time. Several works done for covid-19 detection using different techniques however, the use of small datasets and the lack of validation tests still limit their works. Also, they depend only on the increasing the accuracy and the precision of the model without giving attention to their complexity which is one of the main conditions in the healthcare application.

View Article and Find Full Text PDF

Under a dense and large IoT network, a star topology where each device is directly connected to the Internet gateway may cause serious waste of energy and congestion issues. Grouping network devices into clusters provides a suitable architecture to reduce the energy consumption and allows an effective management of communication channels. Although several clustering approaches were proposed in the literature, most of them use the single-hop intra-clustering model.

View Article and Find Full Text PDF

Background And Objectives: Recent advances in miniature biomedical sensors, mobile smartphones, wireless communications, and distributed computing technologies provide promising techniques for developing mobile health systems. Such systems are capable of monitoring epileptic seizures reliably, which are classified as chronic diseases. Three challenging issues raised in this context with regard to the transformation, compression, storage, and visualization of big data, which results from a continuous recording of epileptic seizures using mobile devices.

View Article and Find Full Text PDF