Publications by authors named "Saad Aldawood"

Nanocomposites (NCs) have attractive potential applications in gas-sensing, energy, photocatalysis, and biomedicine. In the present work, the fabrication of CuO/ZrO/TiO/RGO nanocomposites (NCs) was done a simple chemical route. Our aim in this work was to synthesis and investigate the selective anticancer activity of TiO NPs by supporting CuO, ZrO, and RGO toward cancer and normal cells.

View Article and Find Full Text PDF

In order to investigate the distributions and possible dispersion mechanism(s) of naturally occurring radioactive materials (NORMs: Ra, Th, and K) from coal-based brick kilns, a systematic set (n = 60) of coal, ash, surface-soil, and subsurface soil samples were analyzed. High-quality analytical data of U, Th and K obtained from HPGe detector and TRIGA Mark-II research reactor-based neutron activation analysis were converted to the corresponding radioactivities. Average (n = 10) radioactivities of Ra, Th, and  K in coal samples were 15.

View Article and Find Full Text PDF

The biosynthesis of nanoparticles is a crucial research area aimed at developing innovative, cost-effective, and eco-friendly synthesis techniques for various applications. Herein, we synthesized copper oxide nanoparticles (CuNPs) using Couroupita guianensis flower extract via a simple green synthesis method. These green CuNPs demonstrate promising antimicrobial activity and anticancer activity against A549 nonsmall cell lung cancer (NSCLC) cells.

View Article and Find Full Text PDF

In this study, the shielding properties of novel polymer composites, developed by integrating glycidyl methacrylate with nanoparticles of bismuth oxide (BiO) and tungsten oxide (WO), were explored. The ability of the composites to attenuate gamma radiation was evaluated by measuring the emissions from Ba-133, Co-60, Cs-137, and Na-22. X-ray diffraction (XRD) spectra were obtained for both the pure polymer glycidyl methacrylate and the samples containing nanostructures of BiO, BiO/WO, and WO, and scanning electron microscopy (SEM) was used to analyze the samples.

View Article and Find Full Text PDF

The study investigates the potential of Rhizoclonium hieroglyphicum as a novel source for synthesizing nickel oxide nanoparticles (RH-NiONPs) and evaluates its biological applications. Phytochemicals in the algal extract serve as capping, reducing and stabilizing agent for nickel oxide nanoparticles. The process variables were optimized using BBD based RSM to obtain maximum RH-NiONPs.

View Article and Find Full Text PDF

For the first time, we suggest using leaf extract from Ocimum americanum as the economically viable bio-fabrication of copper nanomaterials. The residuals of leaf extract bio-capping provide the stability of the nanomaterials in-situ. UV-Vis and XRD confirmed the formation, with the UV-Vis spectrum of Cu-NMs revealing a surface plasmon resonance characteristic peak at 350 nm.

View Article and Find Full Text PDF

This study explored the alteration of naturally occurring radioactive materials (NORMs: Ra (≈U), Th, K) in an anthropogenically disrupted urban river-basin (Turag, Bangladesh) in terms of constitutional substances (Sc, Ti, V, Fe, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W, Th, U) of heavy-minerals. Average activity concentrations of Ra (≈U), Th, and K were 41.5 ± 12.

View Article and Find Full Text PDF

The present work was designed to synthesize AgO-supported MgO/rGO nanocomposites (NCs) via green method using Phoenix leaf extract for improved photocatalytic and anticancer activity. Green synthesized AgO-supported MgO/rGO NCs were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Raman, ultraviolet-visible (UV-vis) spectroscopy, and photoluminescence (PL) spectroscopy, and gas chromatography-mass spectroscopy (GC-MS) was applied to examine the chemical components of the Phoenix leaf extract. Characterization data confirmed the preparation of MgO NPs, AgO-MgO NCs, and AgO-MgO/rGO NC with particle size of 26-28 nm.

View Article and Find Full Text PDF

The purpose of the present study is to enhance the anticancer and biocompatibility performance of TiO NPs, ZnO NPs, ZnO-TiO (NCs), and ZnO-TiO/reduced graphene oxide (RGO) NCs against two types of human cancer (HCT116) and normal (HUVCE) cells. A novel procedure for synthesizing ZnO-TiO/RGO NCs has been developed using extract. The improved physicochemical properties of the obtained samples were investigated using different techniques such as XRD, TEM, SEM, XPS, FTIR, DLS and UV-visible spectroscopy.

View Article and Find Full Text PDF

To investigate the interplay between varying anthropogenic activities and sediment dynamics in an urban river (Turag, Bangladesh), this study involved 37-sediment samples from 11 different sections of the river. Neutron activation analysis and atomic absorption spectrometry were utilized to quantify the concentrations of 14 metal(oid)s (Al, Ti, Co, Fe, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn). This study revealed significant toxic metal trends, with Principal coordinate analysis explaining 62.

View Article and Find Full Text PDF

Pure and manganese-doped titanium dioxide nanoparticles (MnTiO-NPs) were synthesized by the defect-oriented hydrothermal approach. The synthesized material was then characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy (UV-Vis). The agar well diffusion method assessed the antibacterial efficiency of TiO and MnTiO-NPs against and .

View Article and Find Full Text PDF

Naturally occurring radioactive materials (NORMs: Th, Ra, K) can reach our respiratory system by breathing of road dust which can cause severe health risks. Targeting the pioneering consideration of health risks from the NORMs in road dust, this work reveals the radioactivity abundances of NORMs in road dust from a megacity (Dhaka) of a developing country (Bangladesh). Bulk chemical compositions of U, Th, and K obtained from neutron activation analysis were converted to the equivalent radioactivities.

View Article and Find Full Text PDF

This study was carried out on a negligible anthropogenically impacted Indo-Bangla transboundary river basin (Atrai, Bangladesh) to elicit radionuclides' and elemental distributions. Thirty sediment samples were collected from the Bangladesh portion of the river, and instrumental neutron activation analysis and HPGe γ-Spectrometry techniques were used to determine environmental radionuclides (e.g.

View Article and Find Full Text PDF

Tannery-effluent is one of the top-ranked hazardous waste which is generally discharged into the river. To study the fluvial response toward the tannery-effluents and to trace anthropogenic foot-prints in the fluvial-system, a suite of systematically collected sediment and water samples were analyzed for radioactive (Ra, Th, and K) and non-radioactive elements (Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, Hg, and Pb). Neutron activation analysis and atomic absorption spectroscopy were used for elemental analysis, whereas HPGe-gamma-detector was used for measuring the primordial-radionuclides.

View Article and Find Full Text PDF

Zinc ferrite nanoparticles (ZnFeO NPs) have attracted extensive attention for their diverse applications including sensing, waste-water treatment, and biomedicine. The novelty of the present work is the fabrication of ZnFeO/RGO NCs by using a one-step hydrothermal process to assess the influence of RGO doping on the physicochemical properties and anticancer efficacy of ZnFeO NPs. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray(EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), UV-vis spectroscopy, and Photoluminescence (PL) spectroscopy were employed to characterize prepared pure ZnFeO NPs and ZnFeO/ RGO NCs.

View Article and Find Full Text PDF

This study utilized surface sediments from a potentially less polluted transboundary Himalayan River (Brahmaputra: China-India-Bangladesh) to investigate the abundance of 15 geochemically and ecologically significant elements and to predict their sources and ecological consequences. INAA was applied to determine the elemental concentrations. The average abundances (μg.

View Article and Find Full Text PDF

Graphene derivatives and metal oxide-based nanocomposites (NCs) are being studied for their diverse applications including gas sensing, environmental remediation, and biomedicine. The aim of the present work was to evaluate the effect of rGO and BiO integration on photocatalytic and anticancer efficacy. A novel BiO-WO/rGO NCs was successfully prepared via the precipitation method.

View Article and Find Full Text PDF

The incorporation of graphene with metal oxide has been widely explored in various fields, including energy storage devices, optical applications, biomedical applications, and water remediation. This research aimed to assess the impact of reduced graphene oxide (RGO) doping on the photocatalytic and anticancer properties of InO nanoparticles. Pure and InO/RGO nanocomposites were effectively synthesized using the single-step microwave hydrothermal process.

View Article and Find Full Text PDF

Indium oxide nanoparticles (InO NPs) are being investigated for a number of applications including gas-sensing, environmental remediation, and biomedicine. We aimed to examine the effect of silver (Ag) doping on photocatalytic and anticancer activity of InO NPs. The Ag-doped (2%, 4%, and 6%weight) InO NPs were synthesized by the photodeposition method.

View Article and Find Full Text PDF

This study aimed to investigate the radiation risks in terms of effective dose and the cancer risk probability resulting from computed tomography (CT) scans of the head for traumatic patients and determine how often traumatic abnormalities occur. Data were collected retrospectively for 138 traumatic patients from the picture archiving and communication system, including exposure parameters and clinical findings. The mean values of the dose length product, CT dose index volume and effective dose for the CT head examinations were 787 ± 67.

View Article and Find Full Text PDF

The use of (gooseberry) leaf extract to synthesize Boron-doped zinc oxide nanosheets (B-doped ZnO-NSs) is deliberated in this article. Scanning electron microscopy (SEM) shows a network of synthesized nanosheets randomly aligned side by side in a B-doped ZnO (15 wt% B) sample. The thickness of B-doped ZnO-NSs is in the range of 20-80 nm.

View Article and Find Full Text PDF

Metal oxide and graphene derivative-based nanocomposites (NCs) are attractive to the fields of environmental remediation, optics, and cancer therapy owing to their remarkable physicochemical characteristics. There is limited information on the environmental and biomedical applications of tin oxide-reduced graphene oxide nanocomposites (SnO-rGO NCs). The goal of this work was to explore the photocatalytic activity and anticancer efficacy of SnO-rGO NCs.

View Article and Find Full Text PDF

A model is proposed to calculate the melting points of nanoparticles based on the Lennard-Jones (L-J) potential function. The effects of the size, the shape, and the atomic volume and surface packing of the nanoparticles are considered in the model. The model, based on the L-J potential function for spherical nanoparticles, agrees with the experimental values of gold (Au) and lead (Pb) nanoparticles.

View Article and Find Full Text PDF

Due to unique physicochemical properties, magnesium oxide nanoparticles (MgO NPs) have shown great potential for various applications, including biomedical and environmental remediation. Moreover, the physiochemical properties of MgO NPs can be tailored by metal ion doping that can be utilized in photocatalytic performance and in the biomedical field. There is limited study on the photocatalytic activity and biocompatibility of silver (Ag)-doped MgO NPs.

View Article and Find Full Text PDF

Nucleopolyhedrovirus is an effective biocontrol agent but for its biggest disadvantage of short persistence under sunlight conditions. In this study, 10 plant extracts were evaluated as ultraviolet (UV) protectants to improve the persistence of Spodoptera littoralis multiple-embedded nucleopolyhedrovirus (SpliMNPV) against cotton leafworm (Spodoptera littoralis Boisduval). In the primary lab screening test, 5 out of 10 additives (cloves, henna, green tea, pomegranate, and grape extracts) presented a high rate of virus protection with original activity remaining (OAR) percentage of 100%, 97%, 91%, 90.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: