IEEE Trans Neural Syst Rehabil Eng
May 2019
Falls in older adults are a major cause of morbidity and mortality and are a key class of preventable injuries. This paper presents a patient-specific (PS) fall prediction and detection prototype system that utilizes a single tri-axial accelerometer attached to the patient's thigh to distinguish between activities of daily living (ADL) and fall events. The proposed system consists of two modes of operation: 1) fast mode for fall predication (FMFP) predicting a fall event (300-700 msec) before occurring and 2) slow mode for fall detection (SMFD) with a 1-sec latency for detecting a fall event.
View Article and Find Full Text PDF