Publications by authors named "Saad Abdullah Alajlan"

Article Synopsis
  • Heart disease poses significant health challenges, highlighting the need for accurate and timely detection methods.
  • This research introduces an advanced machine learning system that combines Random Forest and Ada Boost classifiers, along with data pre-processing techniques like standard scaling and Recursive Feature Elimination (RFE), to improve cardiac disease diagnosis.
  • The proposed system achieved an impressive accuracy of 99.25%, demonstrating its effectiveness compared to traditional models and its potential integration into IoT-enabled healthcare for better patient outcomes.
View Article and Find Full Text PDF

This research explores the use of gated recurrent units (GRUs) for automated brain tumor detection using MRI data. The GRU model captures sequential patterns and considers spatial information within individual MRI images and the temporal evolution of lesion characteristics. The proposed approach improves the accuracy of tumor detection using MRI images.

View Article and Find Full Text PDF

Brain tumor segmentation from Magnetic Resonance Images (MRI) is considered a big challenge due to the complexity of brain tumor tissues, and segmenting these tissues from the healthy tissues is an even more tedious challenge when manual segmentation is undertaken by radiologists. In this paper, we have presented an experimental approach to emphasize the impact and effectiveness of deep learning elements like optimizers and loss functions towards a deep learning optimal solution for brain tumor segmentation. We evaluated our performance results on the most popular brain tumor datasets (MICCAI BraTS 2020 and RSNA-ASNR-MICCAI BraTS 2021).

View Article and Find Full Text PDF

Soft sensors are data-driven devices that allow for estimates of quantities that are either impossible to measure or prohibitively expensive to do so. DL (deep learning) is a relatively new feature representation method for data with complex structures that has a lot of promise for soft sensing of industrial processes. One of the most important aspects of building accurate soft sensors is feature representation.

View Article and Find Full Text PDF

Brain tumor segmentation from MRIs has always been a challenging task for radiologists, therefore, an automatic and generalized system to address this task is needed. Among all other deep learning techniques used in medical imaging, U-Net-based variants are the most used models found in the literature to segment medical images with respect to different modalities. Therefore, the goal of this paper is to examine the numerous advancements and innovations in the U-Net architecture, as well as recent trends, with the aim of highlighting the ongoing potential of U-Net being used to better the performance of brain tumor segmentation.

View Article and Find Full Text PDF

The aedes mosquito-borne dengue viruses cause dengue fever, an arboviral disease (DENVs). In 2019, the World Health Organization forecasts a yearly occurrence of infections from 100 million to 400 million, the maximum number of dengue cases ever testified worldwide, prompting WHO to label the virus one of the world's top ten public health risks. Dengue hemorrhagic fever can progress into dengue shock syndrome, which can be fatal.

View Article and Find Full Text PDF