In 2003, Anabaena sensory rhodopsin (ASR), a membrane-bound light sensor protein, was discovered in cyanobacteria. Since then, a large number of functions have been described for ASR, based on protein biochemical and biophysical studies. However, no study has determined the in vivo mechanism of photosensory transduction for ASR and its transducer protein (ASRT).
View Article and Find Full Text PDFAnabaena sensory rhodopsin (ASR) is an archaeal-type rhodopsin found in eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer) that is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor by activating the soluble transducer. One of the characteristics of ASR is that the formation of the M intermediate accompanies a proton transfer from the Schiff base to Asp217 in the cytoplasmic side [Shi, L.
View Article and Find Full Text PDFAnabaena sensory rhodopsin is a seven transmembrane protein that uses all-trans/13-cis retinal as a chromophore. About 22 residues in the retinal-binding pocket of microbial rhodopsins are conserved and important to control the quality of absorbing light and the function of ion transport or sensory transduction. The absorption maximum is 550 nm in the presence of all-trans retinal at dark.
View Article and Find Full Text PDFIt was found recently that Anabaena sensory rhodopsin (ASR), which possibly serves as a photoreceptor for chromatic adaptation, interacts with a soluble cytoplasmic transducer. The X-ray structure of the transducer-free protein revealed an extensive hydrogen-bonded network of amino acid residues and water molecules in the cytoplasmic half of ASR, in high contrast to its haloarchaeal counterparts. Using time-resolved spectroscopy of the wild-type and mutant ASR in the visible and infrared ranges, we tried to determine whether this hydrogen-bonded network is used to translocate protons and whether those proton transfers are important for interaction with the transducer.
View Article and Find Full Text PDF