Publications by authors named "Sa'ad Y Salim"

Background: The aim of this study was to examine the effect of colitis and anti-inflammatory therapies on the healing of colonic anastomoses in mice.

Methods: Female C57BL/6 mice were randomized into eight groups; four groups receiving plain tap-water and four groups receiving dextran sulfate sodium. Intra-peritoneal treatment was given therapeutically for 14 days with placebo, prednisolone, azathioprine, or infliximab (IFX).

View Article and Find Full Text PDF

Crohn disease (CD) is a multifactorial disease in which an abnormal immune response in the gastrointestinal (GI) tract leads to chronic inflammation. The small intestine, particularly the ileum, of patients with CD is colonized by adherent-invasive E. coli (AIEC)--a pathogenic group of E.

View Article and Find Full Text PDF

The current paradigm of inflammatory bowel diseases (IBD), both Crohn's disease (CD) and ulcerative colitis (UC), involves the interaction between environmental factors in the intestinal lumen and inappropriate host immune responses in genetically predisposed individuals. The intestinal mucosal barrier has evolved to maintain a delicate balance between absorbing essential nutrients while preventing the entry and responding to harmful contents. In IBD, disruptions of essential elements of the intestinal barrier lead to permeability defects.

View Article and Find Full Text PDF

Recurrent Crohn's disease originates with small erosions in the follicle-associated epithelium overlying the Peyer's patches. Animal studies have illustrated mucosal immune regulation by dendritic cells located in the subepithelial dome. The aim of this study was to characterize the dendritic cells at this specific site in patients with Crohn's disease.

View Article and Find Full Text PDF

We investigated myeloid-dendritic cell (DC) marker and Toll-like receptor (TLR)-2 and 4 distributions in ileal samples from Crohn's disease (CD) patients (n = 14) and controls (n = 13). In controls, no TLR-2+ cells were observed, and higher numbers of TLR-4+ and DC-SIGN+ cells (P < 0.01) were detected in ileal samples when compared versus colonic tissues.

View Article and Find Full Text PDF

The aim of this study was to identify cell adhesion molecules that could serve as targets of the human follicle-associated epithelium (FAE) overlying Peyer's patches and to assess nanoparticle uptake levels across this epithelium. We first studied the expression of the mouse M-cell marker beta(1)-integrin and used a model of human FAE derived from intestinal epithelial Caco-2 cells and Raji B-cells to identify additional potential targets by cDNA array. The protein expression of potential targets in the model FAE and in human ileal FAE tissues was quantified by immunofluorescence.

View Article and Find Full Text PDF

The follicle-associated epithelium (FAE), covering Peyer's patches, provides a route of entry for antigens and microorganisms. Animal studies showed enhanced antigen and bacterial uptake in FAE, but no study on barrier function of human FAE has been reported. Our aim was to characterize the normal barrier properties of human FAE.

View Article and Find Full Text PDF