Publications by authors named "SZARKOWSKI J"

Two single-strand-specific nucleases, discovered in plants, have been used to investigate the secondary and tertiary structures of the native bovine liver selenocysteine tRNA(Sec). To check the possible influence of nucleotide modifications on these structures, we compared the results obtained with the fully modified tRNA to the unmodified transcript prepared by in vitro T7 transcription of the Xenopus laevis tRNA(Sec) gene. We found that the structures in solution of the native tRNA(Sec) and the transcript are very similar despite some differences in accessibility to the enzymatic probes.

View Article and Find Full Text PDF

A single-strand-specific nuclease from wheat chloroplasts (ChS nuclease) was tested as a tool for RNA secondary and tertiary structure investigations, using yeast tRNA(Phe) and yeast tRNA(Asp) as models. In tRNA(Phe) the nuclease introduced main primary cleavages at positions U33, A35 and A36 in the anticodon-loop and G18 and G19 in the D-loop. In tRNA(Asp) the main primary cleavages occurred at positions U33, G34 and U35 in the anticodon-loop and the lower one at position C20:1 in the D-loop.

View Article and Find Full Text PDF

A single-strand-specific nuclease from rye germ (Rn nuclease I) was used for secondary and tertiary structure investigations of tRNAs with large variable arms (class II tRNAs). We have studied the structure in solution of two recently sequenced tRNA(Leu): yeast tRNA(Leu)(ncm5UmAA) and bovine tRNA(Leu)(XmAA) as well as yeast tRNA(Leu)(UAG), tRNA(Leu)(m5CAA) and tRNA(Ser)(IGA). The latter is the only tRNA with a long variable arm for which the secondary and tertiary structure has already been studied by use of chemical probes and computer modelling.

View Article and Find Full Text PDF

A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop.

View Article and Find Full Text PDF

A new nuclease (Rn) isolated from rye nucleus was applied for the structural studies of methionine initiator transfer ribonucleic acid and ribosomal 5S rRNA from yellow lupin seeds. The enzyme shows high specificity for some regions of both RNAs. The dihydrouridine and ribothymidine loops which are supposed to be involved in the tertiary interactions of the methionine initiator tRNA were hydrolysed.

View Article and Find Full Text PDF

A nuclease has been purified about 100-fold from ammonium chloride wash of rye germ ribosomes. The enzyme was electrophoretically homogeneous. Its M, was 20,000 and pl 4.

View Article and Find Full Text PDF

Deoxyribonucleolytic activity was found to be associated with cytoplasmic ribosomes and ribosomal subunits of rye germs. The activity has the pH optimum at 5.0.

View Article and Find Full Text PDF

1. An endonuclease has been isolated from the nuclei of rye (Secale cereale L) germ and partially purified. The enzyme shows optimum activity over the pH range 5.

View Article and Find Full Text PDF

1. Alkaline ribonuclease (pH optimum 7.6) was isolated from rye (Secale cereale L) germ cytosol and partially purified; the preparation was devoid of other nucleolytic activities.

View Article and Find Full Text PDF