Publications by authors named "SW Bang"

This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.

View Article and Find Full Text PDF

Drain-induced barrier lowering (DIBL) is one of the most critical obstacles degrading the reliability of integrated circuits based on miniaturized transistors. Here, the effect of a crystallographic structure change in InGaO [indium gallium oxide (IGO)] thin-films on the DIBL was investigated. Preferentially oriented IGO (po-IGO) thin-film transistors (TFTs) have outstanding device performances with a field-effect mobility of 81.

View Article and Find Full Text PDF

Amorphous IGZO (a-IGZO) thin-film transistors (TFTs) are standard backplane electronics to power active-matrix organic light-emitting diode (AMOLED) televisions due to their high carrier mobility and negligible low leakage characteristics. Despite their advantages, limitations in color depth arise from a steep subthreshold swing (SS) (≤ 0.1 V/decade), necessitating costly external compensation for IGZO transistors.

View Article and Find Full Text PDF

Plants accumulate several metabolites in response to drought stress, including branched-chain amino acids (BCAAs). However, the roles of BCAAs in plant drought responses and the underlying molecular mechanisms for BCAA accumulation remain elusive. Here, we demonstrate that rice (Oryza sativa) DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (OsDIAT) mediates the accumulation of BCAAs in rice in response to drought stress.

View Article and Find Full Text PDF

Land plants have developed a comprehensive system to cope with the drought stress, and it is operated by intricate signaling networks, including transcriptional regulation. Herein, we identified the function of OsNAC17, a member of NAC (NAM, ATAF, and CUC2) transcription factor family, in drought tolerance. OsNAC17 is localized to the nucleus, and its expression was significantly induced under drought conditions.

View Article and Find Full Text PDF

Particulate matter has been increasing worldwide causing air pollution and serious health hazards. Owing to increased time spent indoors and lifestyle changes, assessing indoor air quality has become crucial. This study investigated the effect of watering and drought and illumination conditions (constant light, light/dark cycle, and constant dark) on particulate matter2.

View Article and Find Full Text PDF

Drought is a common abiotic stress for terrestrial plants and often affects crop development and yield. Recent studies have suggested that lignin plays a crucial role in plant drought tolerance; however, the underlying molecular mechanisms are still largely unknown. Here, we report that the rice (Oryza sativa) gene CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) is directly activated by the OsNAC5 transcription factor, which mediates drought tolerance through regulating lignin accumulation.

View Article and Find Full Text PDF

Abiotic stresses severely affect plant growth and productivity. To cope with abiotic stresses, plants have evolved tolerance mechanisms that are tightly regulated by reprogramming transcription factors (TFs). APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors are known to play an important role in various abiotic stresses.

View Article and Find Full Text PDF

The mitochondrial gene , which is co-transcribed with and causes cytoplasmic male sterility in crops, is widely distributed across wild species and genera of Brassicaceae. However, to date, intraspecific variations in the presence of have not yet been studied, and the mechanisms underlying the wide distribution of the gene remain unclear. We analyzed the presence and sequence variations of in two wild species, and .

View Article and Find Full Text PDF

Chloroplast ribonucleoproteins (cpRNPs) are nuclear-encoded and highly abundant proteins that are proposed to function in chloroplast RNA metabolism. However, the molecular mechanisms underlying the regulation of chloroplast RNAs involved in stress tolerance are poorly understood. Here, we demonstrate that (), a rice () cpRNP gene, is essential for stabilization of RNAs from the NAD(P)H dehydrogenase (NDH) complex, which in turn enhances drought and cold stress tolerance.

View Article and Find Full Text PDF

Drought is one of the major environmental stresses adversely affecting crop productivity worldwide. Precise characterization of genes involved in drought response is necessary to develop new crop varieties with enhanced drought tolerance. Previously, we identified 66 drought-induced miRNAs in rice plants.

View Article and Find Full Text PDF

CCCH zinc finger proteins are members of the zinc finger protein family, and are known to participate in the regulation of development and stress responses via the posttranscriptional regulation of messenger RNA in animals and yeast. However, the molecular mechanism of CCCHZF-mediated drought tolerance is not well understood. We analyzed the functions of , a member of the rice CCCHZF family.

View Article and Find Full Text PDF

Alloplasmic plants exhibit various phenotypic changes such as cytoplasmic male sterility (CMS). We have been attempting to produce an alloplasmic CMS line (2n = 20) carrying cytoplasm (cyt-) for several years, but a single extra chromosome always remained in all lines produced. We confirmed a -specific band in the alloplasmic line carrying cytoplasm by RAPD analysis, indicating that the additional chromosome was derived from .

View Article and Find Full Text PDF

Photoelectrochemical (PEC) water splitting is one of the most promising hydrogen production methods because of its high efficiency, renewable resources and harmless by-products. Gallium nitride (GaN) is suitable for PEC water splitting because it has excellent stability in electrolyte and band gap energy which straddles the redox potential of water (V = 1.23 V).

View Article and Find Full Text PDF

In legumes, nitrogen (N) can be stored as ureide allantoin and transported by ureide permease (UPS) from nodules to leaves where it is catabolized to release ammonium and assimilation to amino acids. In non-leguminous plants especially rice, information on its roles in N metabolism is scarce. Here, we show that OsUPS1 is localized in plasma membranes and are highly expressed in vascular tissues of rice.

View Article and Find Full Text PDF

Drought stress seriously impacts on plant development and productivity. Improvement of drought tolerance without yield penalty is a great challenge in crop biotechnology. Here, we report that the rice (Oryza sativa) homeodomain-leucine zipper transcription factor gene, OsTF1L (Oryza sativa transcription factor 1-like), is a key regulator of drought tolerance mechanisms.

View Article and Find Full Text PDF

Drought has a serious impact on agriculture worldwide. A plant's ability to adapt to rhizosphere drought stress requires reprogramming of root growth and development. Although physiological studies have documented the root adaption for tolerance to the drought stress, underlying molecular mechanisms is still incomplete, which is essential for crop engineering.

View Article and Find Full Text PDF

The mechanisms of plant response and adaptation to drought stress require the regulation of transcriptional networks via the induction of drought-responsive transcription factors. Nuclear Factor Y (NF-Y) transcription factors have aroused interest in roles of plant drought stress responses. However, the molecular mechanism of the NF-Y-induced drought tolerance is not well understood.

View Article and Find Full Text PDF

Ossification of the tentorium cerebelli over the trigeminal notch is rare, but it may cause compression of the trigeminal nerve, leading to trigeminal neuralgia (TN). We were unable to find any previously reported cases with radiological evaluation, although we did find one case with surgically proven ossification of the tentorium cerebelli. Here, we present a case of TN caused by tentorial ossification over the trigeminal notch depicted on magnetic resonance imaging (MRI) and computed tomography (CT).

View Article and Find Full Text PDF

Even within closely related taxa, total length variation of PCR amplicons from chloroplast SSR must be confirmed by sequencing to avoid misinterpreting genetic relationships.

View Article and Find Full Text PDF

We have characterized four novel constitutive promoters ARP1, H3F3, HSP and H2BF3 that are active in all tissues/stages of transgenic plants and stable over two homozygous generations. Gene promoters that are active and stable over several generations in transgenic plants are valuable tools for plant research and biotechnology. In this study, we characterized four putative constitutive promoters (ARP1, H3F3, HSP and H2BF3) in transgenic rice plants.

View Article and Find Full Text PDF

The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomes during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311-366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal.

View Article and Find Full Text PDF

In Brassicaceae crop breeding programs, wild relatives have been evaluated as genetic resources to develop new cultivars with biotic and abiotic stress resistance. This has become necessary because of the diversification of ecotypes of diseases and pests, changing food preferences, advances in production technology, the use of new approaches such as in vitro breeding programs, and the need for economical production of F1 seed. To produce potential new cultivars, interspecific and intergeneric hybridizations have been performed between cultivated species and between cultivated species and their wild relatives.

View Article and Find Full Text PDF

Six anthocyanins were isolated from the flowers of the Nagai line of Iris ensata Thunb. They were identified as petunidin and malvidin 3-O-beta-[(4"'-Z-p-coumaroyl-alpha-rhamnopyranosyl)-(1-->6)-beta-glucopyranoside]-5-O-beta-glucopyranosides (1 and 3) and their E-forms (2 and 4), and petunidin and malvidin 3-O-rutinoside-5-O-glucosides (5 and 6). Though the E-form of petunidin 3-O-[(4"'-p-coumaroylrhamnosyl)-(1-->6)-glucoside]-5-O-glucoside has been reported, its Z-form was found for the first time.

View Article and Find Full Text PDF

Human TopBP1 is involved in the DNA damage checkpoint response, chromosome replication, and other functions of cell cycle control. The C-terminal region of TopBP1 (TbpCtr: amino acid residues 1222-1522) is involved in the localization of TopBP1 to the centrosomes during mitosis. Here, we showed that the amino acid residues 741-885 of TopBP1, in addition to TbpCtr, are necessary for the centrosomal localization of TopBP1.

View Article and Find Full Text PDF