Plate tectonics is among the most important geological processes on Earth, but its emergence and evolution remain unclear. Here we extrapolate models of present-day plate tectonics to the past and propose that since about three billion years ago the rise of continents and the accumulation of sediments at continental edges and in trenches has provided lubrication for the stabilization of subduction and has been crucial in the development of plate tectonics on Earth. We conclude that the two largest surface erosion and subduction lubrication events occurred after the Palaeoproterozoic Huronian global glaciations (2.
View Article and Find Full Text PDFScientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics.
View Article and Find Full Text PDFThe Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed.
View Article and Find Full Text PDFWhen continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration.
View Article and Find Full Text PDFMore than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source.
View Article and Find Full Text PDFSeismic data from central Tibet have been combined to image the subsurface structure and understand the evolution of the collision of India and Eurasia. The 410- and 660-kilometer mantle discontinuities are sharply defined, implying a lack of a subducting slab beneath the plateau. The discontinuities appear slightly deeper beneath northern Tibet, implying that the average temperature of the mantle above the transition zone is about 300 degrees C hotter in the north than in the south.
View Article and Find Full Text PDFThe volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate the existence of a mantle thermal plume beneath Hawaii, no direct seismic evidence for such a plume in the upper mantle has yet been found. Here we present an analysis of compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations on the Hawaiian islands, that indicate a zone of very low shear-wave velocity (< 4 km s(-1)) starting at 130-140 km depth beneath the central part of the island of Hawaii and extending deeper into the upper mantle.
View Article and Find Full Text PDFAnhydrous metasedimentary and mafic xenoliths entrained in 3-million-year-old shoshonitic lavas of the central Tibetan Plateau record a thermal gradient reaching about 800 degrees to 1000 degrees C at a depth of 30 to 50 kilometers; just before extraction, these same xenoliths were heated as much as 200 degrees C. Although these rocks show that the central Tibetan crust is hot enough to cause even dehydration melting of mica, the absence of hydrous minerals, and the match of our calculated P-wave speeds and Poisson's ratios with seismological observations, argue against the presence of widespread crustal melting.
View Article and Find Full Text PDFP-to-S converted teleseismic waves recorded by temporary broadband networks across Tibet show a north-dipping interface that begins 50 kilometers north of the Zangbo suture at the depth of the Moho (80 kilometers) and extends to a depth of 200 kilometers beneath the Bangong suture. Under northern Tibet a segmented south-dipping structure was imaged. These observations suggest a different form of detachment of the Indian and Asian lithospheric mantles caused by differences in their composition and buoyancy.
View Article and Find Full Text PDF