Publications by authors named "SV Kala"

Synthetic cannabinoids represent an emerging drug problem in the USA, as these compounds are constantly being modified and rapidly sold as soon as they become available. Laboratories around the world are constantly improving the analytical methods to detect and identify these newly available designer drugs. This study used a simple approach to detect and quantify a variety of synthetic cannabinoids (14 parent compounds and 15 metabolites including series XLR, AM, JWH, UR, RCS, PB, HU and AB-FUBINACA) using LC-MS-MS.

View Article and Find Full Text PDF

The aim of the present study was to develop and validate a method for the detection and quantitation of drugs of abuse in oral fluids. Fortified oral fluid samples (made in-house) and samples from donors collected with Quantasil oral fluid collection kits from Immunalysis were screened on an Olympus 5400 using reagents purchased from Immunalysis. Amphetamines (AMPs), opiates, phencyclidine (PCP), and cocaine and its metabolite benzoylecgonine (BE) in oral fluids were quantitated by an Applied Biosystems 3200 QTRAP liquid chromatograph-tandem mass spectrometer (LC-MS-MS).

View Article and Find Full Text PDF

Background: Postnatal lead exposure in children and animals produces alterations in the visual system primarily characterized by decreases in the rod-mediated (scotopic) electroretinogram (ERG) amplitude (subnormality). In contrast, low-level gestational Pb exposure (GLE) increases the amplitude of scotopic ERGs in children (supernormality).

Objectives: The goal of this study was to establish a rat model of human equivalent GLE and to determine dose-response effects on scotopic ERGs and on retinal morphology, biochemistry, and dopamine metabolism in adult offspring.

View Article and Find Full Text PDF

We examined the role of GSH in survival and cell death using GCS-2 cells that are deficient in glutamate cysteine ligase (gamma-glutamyl cysteine synthetase, gammaGCS), an enzyme essential for GSH synthesis. Cells maintained in 2.5 mM GSH have GSH levels that are approximately 2% of wild type and grow indefinitely; however, they express both pro- and anti-apoptotic Bcl-2 family members and have detectable levels of cytoplasmic cytochrome C.

View Article and Find Full Text PDF

Purpose: Arsenic, in the form of As(2)O(3), has gained therapeutic importance because it has been shown to be very effective clinically in the treatment of acute promyelocytic leukemia (APL). Via numerous pathways arsenic induces cellular alterations such as induction of apoptosis, inhibition of cellular proliferation, stimulation of differentiation, and inhibition of angiogenesis. Responses vary depending on cell type, dose and the form of arsenic.

View Article and Find Full Text PDF

Taking advantage of mice deficient in gamma-glutamyl transpeptidase that are unable to metabolize glutathione (GSH), we have identified two previously unrecognized urinary metabolites of arsenite: arsenic triglutathione and methylarsenic diglutathione. Following administration of sodium arsenite to these mice, approximately 60-70% of urinary arsenic is present as one of these GSH conjugates. We did not detect the dimethyl derivative, dimethyl arsenic GSH; however, dimethyl arsenic (DMAV) represented approximately 30% of urinary arsenic.

View Article and Find Full Text PDF

Group A streptococci (GAS) can use heme and hemoproteins as sources of iron. However, the machinery for heme acquisition in GAS has not been firmly revealed. Recently, we identified a novel heme-associated cell surface protein (Shp) made by GAS.

View Article and Find Full Text PDF

To investigate repair mechanisms in bleomycin-induced pulmonary fibrosis, we used mice deficient in gamma-glutamyl transpeptidase (GGT-/-), a key enzyme in glutathione (GSH) and cysteine metabolism. Seventy-two hours after bleomycin (0.03 U/g), GGT-/- mice displayed a different inflammatory response to wild-type mice as judged by a near absence of neutrophils in lung tissue and bronchoalveolar lavage and a less pronounced rise in matrix metalloproteinase-9.

View Article and Find Full Text PDF

Analysis of the genome sequence of a serotype M1 group A Streptococcus (GAS) strain identified a gene encoding a previously undescribed putative cell surface protein. The gene was cloned from a serotype M1 strain, and the recombinant protein was overexpressed in Escherichia coli and purified to homogeneity. The purified protein was associated with heme in a 1:1 stoichiometry.

View Article and Find Full Text PDF

We used mice with a targeted disruption in g-glutamyl transpeptidase (GGT-deficient mice) to study the role of glutathione (GSH) in protection against oxygen-induced lung injury. These mice had reduced levels of lung GSH and restricted ability to synthesize GSH because of low levels of cysteine. When GGT-deficient mice were exposed to 80% oxygen, they developed diffuse pulmonary injury and died within eight days.

View Article and Find Full Text PDF

We have used a differential alkaline single cell gel electrophoresis assay of DNA ("omet assay" at pH 13 and 12.3) to evaluate DNA damage as a function of age in mice with an inherited defect in gluthathione (GSH) metabolism. The mice are homozygous null for gamma-glutamyltranspeptidase (GGT), the enzyme responsible for initiating the catabolism of GSH, and paradoxically have reduced levels of GSH and cysteine in many organs.

View Article and Find Full Text PDF

Mice deficient in gamma-glutamyl transpeptidase (GGT) are growth retarded as a result of cysteine deficiency secondary to excessive glutathione excretion in urine and display coat color defects and cataracts. Although GGT is widely expressed throughout the mouse reproductive axis, little is known about its role in reproduction. Here, we present an analysis of the reproductive phenotypes of GGT-deficient mice.

View Article and Find Full Text PDF

We used mice deficient in gamma-glutamyl transpeptidase (GGT) to analyze the effects of GGT deficiency and altered thiol levels on gene expression in liver. GGT-deficient mice have markedly reduced levels of glutathione (GSH), cysteine, methionine, and cysteinylglycine in liver. Steady-state RNA levels of the catalytic subunit of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in GSH synthesis, are elevated 4-fold in these mice, while those for glutathione synthetase (GSH syn) are elevated 2-fold.

View Article and Find Full Text PDF

Worldwide, millions of people are exposed to arsenic in drinking water that exceeds the World Health Organization standard of 10 microg/liter by as much as 50-300-fold, yet little is known about the molecular basis for arsenic excretion. Here we show that transport of arsenic into bile depends on the MRP2/cMOAT transporter and that glutathione is obligatory for such transport. Using reversed phase liquid chromatography/mass spectrometry, we demonstrate that two arsenic-glutathione complexes not previously identified in vivo, arsenic triglutathione and methylarsenic diglutathione, account for most of the arsenic in the bile.

View Article and Find Full Text PDF

Glutathione (GSH) is a major source of reducing equivalents in mammalian cells. To examine the role of GSH synthesis in development and cell growth, we generated mice deficient in GSH by a targeted disruption of the heavy subunit of gamma-glutamylcysteine synthetase (gammaGCS-HS(tm1)), an essential enzyme in GSH synthesis. Embryos homozygous for gammaGCS-HS(tm1) fail to gastrulate, do not form mesoderm, develop distal apoptosis, and die before day 8.

View Article and Find Full Text PDF

Respond on comments on Lieberman's article: Cyclosiloxanes Produce Fatal Liver and Lung Damage in Mice. Environ Health Perspect 107:161-165

View Article and Find Full Text PDF

To examine the toxicity of cyclosiloxanes (CSs), the predominant low molecular weight cyclic silicones found in breast implants, we injected female CD-1 mice intraperitoneally with different doses of distillate (3.5-35 g/kg body weight) containing cyclosiloxane D3 (hexamethylcyclotrisiloxane; CS-D3), cyclosiloxane D4 (octamethylcyclotetrasiloxane; CS-D4), cyclosiloxane D5 (decamethylcyclopentasiloxane; CS-D5), and cyclosiloxane D6 (dodecamethylcyclohexasiloxane; CS-D6). The distillate was found to be lethal and all the mice injected with 35 g/kg died within 5-8 days.

View Article and Find Full Text PDF

To examine the distribution of low molecular weight silicones in body organs, separate groups of female CD-1 mice were injected with either breast implant distillate composed primarily of hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, and tetradecamethylcycloheptasiloxane or a polydimethylsiloxane oil containing low molecular weight linear siloxanes. Mice were injected subcutaneously in the suprascapular area and killed at different times. Levels of individual low molecular weight silicones were measured in 10 different organs (brain, heart, kidney, liver, lung, mesenteric lymph nodes, ovaries, spleen, skeletal muscle, and uterus).

View Article and Find Full Text PDF

We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range.

View Article and Find Full Text PDF

We have developed a sensitive method for the detection, characterization, and quantitation of low molecular weight silicones using gas chromatography coupled with atomic emission detection (GC/AED) and gas chromatography/ mass spectrometry (GC/MS). Using this approach, we have detected 12 distinct silicon-containing peaks in PDMS-V poly(dimethylsiloxane) oil by GC/AED, and we have used GC/MS analysis to identify some of the abundant peaks by MS spectral matching. Polydimethylpolysiloxanes contain 37.

View Article and Find Full Text PDF

The amount of loosely bound iron was measured in frontal cortex and cerebellum from autopsy brain samples from Alzheimer's patients and from non-demented, age matched controls. It was found that the amount of total iron and of ferric iron in Alzheimer's brain tissues was significantly higher compared to control samples in both regions studied. Neither the ferrous nor the ferrous to ferric ratio were found to be changed.

View Article and Find Full Text PDF

The basal and K(+)-induced release of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, were measured in microdialysate samples obtained in vivo from the nucleus accumbens region of rat subchronically exposed to 50 ppm lead for 90 days. The basal and stimulus-induced release of dopamine and the metabolites were significantly reduced in the lead-exposed rats as compared with the controls. These reductions in dopamine and its metabolites are consistent with the reports of decreased dopamine availability associated with lead-induced changes in certain behavioral indices (fixed-interval performance) in rats.

View Article and Find Full Text PDF

Long-term exposure to low levels of lead (Pb) has been shown to produce behavioral disturbances in humans and animal models. Additionally, these disturbances have been shown to be associated with alterations in neurotransmitter systems in certain brain regions. The study presented here was undertaken to examine the effects of low level exposure to Pb on two neurotransmitter systems in various brain regions during the postweaning period.

View Article and Find Full Text PDF

The ability of the metal ion binding rings-opened hydrolysis product of the anthracycline cardioprotective agent ICRF-187 [dexrazoxane; (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane] to remove iron from transferrin and ferritin, and copper from ceruloplasmin was examined. ADR-925 completely removed Fe3+ from transferrin at below physiological pH but was unreactive at pH 7.4.

View Article and Find Full Text PDF