Many studies have suggested that developmental instability (DI) could lead to asymmetric development, otherwise known as fluctuating asymmetry (FA). Several attempts to unravel the biological meaning of FA have been made, yet the main step in estimating FA is to remove the effects of directional asymmetry (DA), which is defined as the average bilateral asymmetry at the population level. Here, we demonstrate in a multivariate context that the conventional method of DA correction does not adequately compensate for the effects of DA in other dimensions of asymmetry.
View Article and Find Full Text PDFRNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret.
View Article and Find Full Text PDFAccurately assessing the toxicity of complex, environmentally relevant mixtures remains an important challenge in ecotoxicology. The goal was to identify biological effects after exposure to environmental water samples and to determine whether the observed effects could be explained by the waterborne metal mixture found in the samples. Zebrafish embryos were exposed to water samples of five different sites originating from two Flemish (Mol and Olen, Belgium) metal contaminated streams: "Scheppelijke Nete" (SN) and "Kneutersloop" (K), and a ditch (D), which is the contamination source of SN.
View Article and Find Full Text PDFBackground: Both asymmetry and the second and fourth digit ratio (2D:4D) relate to various aspects of human life history. Higher asymmetry with extreme 2D:4D ratios have suggested a link between both processes, indicating that early development determines levels of developmental instability. However, most observed associations may be biased because combinations of the digit lengths are used as both dependent and independent variables.
View Article and Find Full Text PDFThe role of developmental instability (DI), as measured by fluctuating asymmetry (FA), in evolutionary biology has been the focus of a wealth of research for more than half a century. In spite of this long period and many published papers, our current state of knowledge reviewed here only allows us to conclude that patterns are heterogeneous and that very little is known about the underlying causes of this heterogeneity. In addition, the statistical properties of FA as a measure of DI are only poorly grasped because of a general lack of understanding of the underlying mechanisms that drive DI.
View Article and Find Full Text PDFBroad-sense heritability of fluctuating asymmetry and developmental instability in the winter moth were analysed in a full-sib breeding experiment. Effects of both genetic background and common environment on both tibia FA (measured for the three pairs of legs) and body size were studied. As body size has previously been shown to be a reliable indicator of larval feeding success and expected fitness, the relationship between FA and body size was investigated as well.
View Article and Find Full Text PDF