Publications by authors named "SUBRAHMANYAN R"

The Dark Ages and Cosmic Dawn are largely unexplored windows on the infant Universe (z ~ 200-10). Observations of the redshifted 21-cm line of neutral hydrogen can provide valuable new insight into fundamental physics and astrophysics during these eras that no other probe can provide, and drives the design of many future ground-based instruments such as the Square Kilometre Array (SKA) and the Hydrogen Epoch of Reionization Array (HERA). We review progress in the field of high-redshift 21-cm Cosmology, in particular focussing on what questions can be addressed by probing the Dark Ages at z > 30.

View Article and Find Full Text PDF

We report the development of drug-encapsulating nanoparticles that bind endogenous albumin upon intravenous injection and evaluate their in vivo performance in a murine as well as canine animal model. The gene encoding a protein-G derived albumin binding domain (ABD) was fused to that of a chimeric polypeptide (CP), and the ABD-CP fusion was recombinantly synthesized by bacterial expression of the gene. Doxorubicin (DOX) was conjugated to the C-terminus of the ABD-CP fusion, and conjugation of multiple copies of the drug to one end of the ABD-CP triggered its self-assembly into ∼100 nm diameter spherical micelles.

View Article and Find Full Text PDF

Type III solar radio bursts are the Sun's most intense and frequent nonthermal radio emissions. They involve two critical problems in astrophysics, plasma physics, and space physics: how collective processes produce nonthermal radiation and how magnetic reconnection occurs and changes magnetic energy into kinetic energy. Here magnetic reconnection events are identified definitively in Solar Dynamics Observatory UV-EUV data, with strong upward and downward pairs of jets, current sheets, and cusp-like geometries on top of time-varying magnetic loops, and strong outflows along pairs of open magnetic field lines.

View Article and Find Full Text PDF

Electrons at relativistic speeds, diffusing in magnetic fields, cause copious emission at radio frequencies in both clusters of galaxies and radio galaxies through non-thermal radiation emission called synchrotron. However, the total power radiated through this mechanism is ill constrained, as the lower limit of the electron energy distribution, or low-energy cutoffs, for radio emission in galaxy clusters and radio galaxies, have not yet been determined. This lower limit, parametrized by the lower limit of the electron momentum - p - is critical for estimating the total energetics of non-thermal electrons produced by cluster mergers or injected by radio galaxy jets, which impacts the formation of large-scale structure in the universe, as well as the evolution of local structures inside galaxy clusters.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity.

View Article and Find Full Text PDF

We have detected the four 18 cm OH lines from the z approximaetely 0.765 gravitational lens toward PMN J0134-0931. The 1612 and 1720 MHz lines are in conjugate absorption and emission, providing a laboratory to test the evolution of fundamental constants over a large lookback time.

View Article and Find Full Text PDF

In late December 1990, a new radio source appeared near the center of our galaxy rivaling the intensity of Sgr A(*) (the compact radio source at the galactic center). Following its first detection, the flux density of the galactic center transient (GCT) increased rapidly to a maximum 1 month later, and then declined gradually with a time scale of about 3 months. Surprisingly, the GCT maintained a steep radio spectrum during both its rising and decay phases.

View Article and Find Full Text PDF