Publications by authors named "STUMPF P"

Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure.

View Article and Find Full Text PDF

FOXG1 is a critical transcription factor in human brain where loss-of-function mutations cause a severe neurodevelopmental disorder, while increased FOXG1 expression is frequently observed in glioblastoma. FOXG1 is an inhibitor of cell patterning and an activator of cell proliferation in chordate model organisms but different mechanisms have been proposed as to how this occurs. To identify genomic targets of FOXG1 in human neural progenitor cells (NPCs), we engineered a cleavable reporter construct in endogenous FOXG1 and performed chromatin immunoprecipitation (ChIP) sequencing.

View Article and Find Full Text PDF

There is a wealth of data indicating human bone marrow contains skeletal stem cells (SSC) with the capacity for osteogenic, chondrogenic and adipogenic differentiation. However, current methods to isolate SSCs are restricted by the lack of a defined marker, limiting understanding of SSC fate, immunophenotype, function and clinical application. The current study applied single-cell RNA-sequencing to profile human adult bone marrow populations from 11 donors and identified novel targets for SSC enrichment.

View Article and Find Full Text PDF

Kabuki syndrome is frequently caused by loss-of-function mutations in one allele of histone 3 lysine 4 (H3K4) methyltransferase KMT2D and is associated with problems in neurological, immunological and skeletal system development. We generated heterozygous KMT2D knockout and Kabuki patient-derived cell models to investigate the role of reduced dosage of KMT2D in stem cells. We discovered chromosomal locus-specific alterations in gene expression, specifically a 110 Kb region containing Synaptotagmin 3 (SYT3), C-Type Lectin Domain Containing 11A (CLEC11A), Chromosome 19 Open Reading Frame 81 (C19ORF81) and SH3 And Multiple Ankyrin Repeat Domains 1 (SHANK1), suggesting locus-specific targeting of KMT2D.

View Article and Find Full Text PDF

Objectives: The primary objective of this study was to investigate the effect of the video-based smartphone app 'VIDEA bewegt' over eight programme weeks on physical activity in German adults.

Design: The study used a single-arm observational design, assessing the app's effectiveness under real-life conditions. Data were collected from July 2019 to July 2020.

View Article and Find Full Text PDF

The future of single cell diversity screens involves ever-larger sample sizes, dictating the need for higher throughput methods with low analytical noise to accurately describe the nature of the cellular system. Current approaches are limited by the Poisson statistic, requiring dilute cell suspensions and associated losses in throughput. In this contribution, we apply Dean entrainment to both cell and bead inputs, defining different volume packets to effect efficient co-encapsulation.

View Article and Find Full Text PDF

Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured.

View Article and Find Full Text PDF

Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels, coordinating both immunogenic and tolerogenic immune responses. To determine molecular switches directing induction of LC immune activation, we performed mathematical modelling of gene regulatory networks identified by single cell RNA sequencing of LCs exposed to TNF-alpha, a key pro-inflammatory signal produced by the skin. Our approach delineated three programmes of LC phenotypic activation (immunogenic, tolerogenic or ambivalent), and confirmed that TNF-alpha enhanced LC immunogenic programming.

View Article and Find Full Text PDF

Purpose: Stereotactic body radiation therapy (SBRT) in the management of adrenal metastases is emerging as a well-tolerated, effective method of treatment for patients with limited metastatic disease. SBRT planning and treatment utilization are widely variable, and publications report heterogeneous radiation dose fractionation schemes and treatment outcomes. The objective of this analysis was to review the current literature on SBRT for adrenal metastases and to develop treatment guidelines and a model for tumor control probability of SBRT for adrenal metastases based on these publications.

View Article and Find Full Text PDF

The impact of radiation prescription dose on postoperative complications during standard of care trimodality therapy for operable stage II-III esophageal and gastroesophageal junction cancers has not been established. We retrospectively reviewed 82 patients with esophageal or gastroesophageal junction cancers treated between 2004 and 2016 with neoadjuvant chemoradiation followed by resection at a single institution. Post-operative complications within 30 days were reviewed and scored using the Comprehensive Complication Index (CCI).

View Article and Find Full Text PDF

Epigenetic memories play an important part in regulating stem cell identities. Tools from the theory of non-Markov processes may help us understand these memories better and develop a more integrated view of stem cell fate and function.

View Article and Find Full Text PDF

Changes in stem cell activity may underpin aging. However, these changes are not completely understood. Here, we combined single-cell profiling with machine learning and in vivo functional studies to explore how hematopoietic stem cell (HSC) divisions patterns evolve with age.

View Article and Find Full Text PDF

Biomedical research often involves conducting experiments on model organisms in the anticipation that the biology learnt will transfer to humans. Previous comparative studies of mouse and human tissues were limited by the use of bulk-cell material. Here we show that transfer learning-the branch of machine learning that concerns passing information from one domain to another-can be used to efficiently map bone marrow biology between species, using data obtained from single-cell RNA sequencing.

View Article and Find Full Text PDF

Modern single cell experiments have revealed unexpected heterogeneity in apparently functionally 'pure' cell populations. However, we are still lacking a conceptual framework to understand this heterogeneity. Here, we propose that cellular memories-changes in the molecular status of a cell in response to a stimulus, that modify the ability of the cell to respond to future stimuli-are an essential ingredient in any such theory.

View Article and Find Full Text PDF

Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, it has proven difficult to generate functional hematopoietic stem cells (HSCs). To define the dynamics and heterogeneity of HSPCs that can be generated in vitro from hPSCs, we explored single-cell RNA sequencing (scRNAseq) in combination with single-cell protein expression analysis.

View Article and Find Full Text PDF

Introduction: Insufficient physical activity is one of the most important risk factors for non-communicable diseases. Physical activity should therefore be intensively promoted in all age groups. Several trials suggest that it can be effectively increased through smartphone interventions.

View Article and Find Full Text PDF
Article Synopsis
  • Langerhans cells (LC) can trigger different immune responses in the skin, but their specific genetic and regulatory mechanisms are not well understood.
  • Research using bulk and single-cell transcriptional profiling shows that human migratory LCs are well-equipped for presenting antigens with specific regulatory elements identified in their gene expression.
  • IRF4 plays a key role in the activation and maturation of LCs, controlling their response to inflammation while preventing excessive immune reactions.
View Article and Find Full Text PDF
Theory of cell fate.

Wiley Interdiscip Rev Syst Biol Med

March 2020

Cell fate decisions are controlled by complex intracellular molecular regulatory networks. Studies increasingly reveal the scale of this complexity: not only do cell fate regulatory networks contain numerous positive and negative feedback loops, they also involve a range of different kinds of nonlinear protein-protein and protein-DNA interactions. This inherent complexity and nonlinearity makes cell fate decisions hard to understand using experiment and intuition alone.

View Article and Find Full Text PDF

Purpose: Patients with human EGFR2-positive (HER2) breast cancer have a high incidence of brain metastases, and trastuzumab emtansine (T-DM1) is often employed. Stereotactic radiosurgery (SRS) is frequently utilized, and case series report increased toxicity with combination SRS and T-DM1. We provide an update of our experience of T-DM1 and SRS evaluating risk of clinically significant radionecrosis (CSRN) and propose a mechanism for this toxicity.

View Article and Find Full Text PDF

In this chapter, we describe techniques for the isolation and characterisation of skeletal stem cells from human bone marrow. The methods for enrichment of STRO-1 and STRO-4 cells using magnetic activated cell sorting are described and we also detail techniques for establishing and characterizing osteogenic, adipogenic, and chondrogenic cultures from these cells. Finally, we present methods for studying the ability of these cells to produce bone in vivo using diffusion chambers which have been implanted subcutaneously into mice.

View Article and Find Full Text PDF

The molecular regulatory network underlying stem cell pluripotency has been intensively studied, and we now have a reliable ensemble model for the "average" pluripotent cell. However, evidence of significant cell-to-cell variability suggests that the activity of this network varies within individual stem cells, leading to differential processing of environmental signals and variability in cell fates. Here, we adapt a method originally designed for face recognition to infer regulatory network patterns within individual cells from single-cell expression data.

View Article and Find Full Text PDF

During acute myelosuppression or thrombocytopenia, bone marrow (BM) hematopoietic cells respond rapidly to replenish peripheral blood platelets. While the cytokine thrombopoietin (Thpo) both regulates platelet production and maintains HSC potential, whether Thpo controls megakaryocyte (Mk)-lineage differentiation of HSCs is unclear. Here, we show that Thpo rapidly upregulates mitochondrial activity in HSCs, an activity accompanied by differentiation to an Mk lineage.

View Article and Find Full Text PDF

Objective: In this study, we analyzed patterns of care for patients with locally advanced cervical cancer to identify predictors for upfront surgery compared with definitive chemoradiation (CRT).

Methods: The National Cancer Database was queried for patients aged 18 years or older with Federation of Gynecology and Obstetrics IB2-IIB cervical cancer. All patients underwent either upfront hysterectomy with or without postoperative radiation therapy versus definitive CRT.

View Article and Find Full Text PDF

Purpose: Stereotactic body radiation therapy (SBRT) for pancreatic cancer requires a skillful approach to deliver ablative doses to the tumor while limiting dose to the highly sensitive duodenum, stomach, and small bowel. Here, we develop knowledge-based artificial neural network dose models (ANN-DMs) to predict dose distributions that would be approved by experienced physicians.

Methods: Arc-based SBRT treatment plans for 43 pancreatic cancer patients were planned, delivering 30-33 Gy in five fractions.

View Article and Find Full Text PDF