Publications by authors named "SS Saavedra"

Self-assembly of molecular multilayers via metal ion linkages has become an important strategy for interfacial engineering of metalloid and metal oxide (MO) substrates, with applications in numerous areas, including energy harvesting, catalysis, and chemical sensing. An important aspect for the rational design of these multilayers is knowledge of the molecular structure-function relationships. For example, in a multilayer composed of different chromophores in each layer, the molecular orientation of each layer, both relative to the adjacent layers and the substrate, influences the efficiency of vectorial energy and electron transfer.

View Article and Find Full Text PDF

Polymerization enhances the stability of a planar supported lipid bilayer (PSLB) but it also changes its chemical and mechanical properties, attenuates lipid diffusion, and may affect the activity of integral membrane proteins. Mixed bilayers composed of fluid lipids and poly(lipids) may provide an appropriate combination of polymeric stability coupled with the fluidity and elasticity needed to maintain the bioactivity of reconstituted receptors. Previously (, , , 12483-12491) we showed that binary mixtures of the polymerizable lipid bis-SorbPC and the fluid lipid DPhPC form phase-segregated PSLBs composed of nanoscale fluid and poly(lipid) domains.

View Article and Find Full Text PDF

Introduction: Platelet activation by mechanical means such as shear stress exposure, is a vital driver of thrombotic risk in implantable blood-contacting devices used in the treatment of heart failure. Lipids are essential in platelets activation and have been studied following biochemical activation. However, little is known regarding lipid alterations occurring with mechanical shear-mediated platelet activation.

View Article and Find Full Text PDF

ATP-sensitive K (K) channels couple cellular metabolism to electrical activity in many cell types. Wild-type K channels are comprised of four pore forming (Kir6.x) and four regulatory (sulfonylurea receptor, SURx) subunits that each contain RKR endoplasmic reticulum retention sequences that serve to properly translocate the channel to the plasma membrane.

View Article and Find Full Text PDF

Metal ion linked multilayers is a unique motif to spatially control and geometrically restrict molecules on a metal oxide surface and is of interest in a number of promising applications. Here we use a bilayer composed of a metal oxide surface, an anthracene annihilator molecule, Zn(II) linking ion, and porphyrin sensitizers to probe the influence of the position of the metal ion binding site on energy transfer, photon upconversion, and photocurrent generation. Despite being energetically similar, varying the position of the carboxy metal ion binding group (i.

View Article and Find Full Text PDF

An electroreflectance method to determine the electron transfer rate constant of a film of redox-active chromophores immobilized on an optically transparent electrode when the surface coverage of the film is very low (<0.1 monolayer) is described herein. The method, potential-modulated total internal reflection fluorescence (PM-TIRF) spectroscopy, is a fluorescence version of potential-modulated attenuated total reflection (PM-ATR) spectroscopy that is applicable when the immobilized chromophores are luminescent.

View Article and Find Full Text PDF

Polymerization of synthetic phospholipid monomers has been widely used to enhance the stability of lipid membranes in applications such as membrane-based biosensing, where the inherent instability of fluid-phase lipid bilayers can be problematic. However, lipid polymerization typically decreases membrane fluidity, which may be required to maintain the activity of reconstituted integral proteins and peptides. Prior work has shown that a bilayer composed of binary mixtures of poly(lipid) and fluid lipid exhibits enhanced stability and supports the function of incorporated biomolecules.

View Article and Find Full Text PDF

Bosutinib is a second-generation tyrosine kinase inhibitor (2GTKI) approved at 400 mg once daily (QD) as first-line therapy in patients with chronic myeloid leukemia (CML) patients and at 500 mg QD in patients who are resistant to or intolerant of prior therapy. In clinical practice, bosutinib is often given to patients who have failed imatinib, nilotinib, and dasatinib (i.e.

View Article and Find Full Text PDF

The inwardly rectifying K (Kir) channel, Kir6.2, plays critical roles in physiological processes in the brain, heart, and pancreas. Although Kir6.

View Article and Find Full Text PDF

The efficiency of charge collection at the organic/transparent conducting oxide (TCO) interface in organic photovoltaic (OPV) devices affects overall device efficiency. Modifying the TCO with an electrochemically active molecule may enhance OPV efficiency by providing a charge-transfer pathway between the electrode and the organic active layer, and may also mitigate surface recombination. The synthesis and characterization of phosphonic acid-ruthenium phthalocyanine (RuPcPA) monolayer films on indium tin oxide (ITO), designed to facilitate charge harvesting at ITO electrodes, is presented in this work.

View Article and Find Full Text PDF

Potential-modulated attenuated total reflectance (PM-ATR) spectroscopy is a spectroelectrochemical method that utilizes the potential modulation approach and a waveguide ATR geometry. This unique combination enables measurements of electron-transfer (ET) kinetics of monolayer to submonolayer thin films on waveguide electrode surfaces. Selective probing of molecular subpopulations in a film can be achieved by choosing appropriate combinations of applied potential, wavelength, and polarization of light, which allows subpopulation structure to be correlated with ET kinetics.

View Article and Find Full Text PDF

We show for the first time that the frontier orbital energetics (conduction band minimum (CBM) and valence band maximum (VBM)) of device-relevant, methylammonium bromide (MABr)-doped, formamidinium lead trihalide perovskite (FA-PVSK) thin films can be characterized using UV-vis spectroelectrochemistry, which provides an additional and straightforward experimental technique for determining energy band values relative to more traditional methods based on photoelectron spectroscopy. FA-PVSK films are processed via a two-step deposition process, known to provide high efficiency solar cells, on semitransparent indium tin oxide (ITO) and titanium dioxide (TiO) electrodes. Spectroelectrochemical characterization is carried out in a nonsolvent electrolyte, and the onset potential for bleaching of the FA-PVSK absorbance is used to estimate the CBM, which provides values of ca.

View Article and Find Full Text PDF

The binding of a target analyte to an ion channel (IC), which is readily detected electrochemically in a label-free manner with single-molecule selectivity and specificity, has generated widespread interest in using natural and engineered ICs as transducers in biosensing platforms. To date, the majority of developments in IC-functionalized sensing have focused on IC selectivity or sensitivity or development of suitable membrane environments and aperture geometries. Comparatively little work has addressed analytical performance criteria, particularly criteria required for temporal measurements of dynamic processes.

View Article and Find Full Text PDF

Chemisorption of an organic monolayer to tune the surface properties of a transparent conductive oxide (TCO) electrode can improve the performance of organic electronic devices that rely on efficient charge transfer between an organic active layer and a TCO contact. Here, a series of perylene diimides (PDIs) was synthesized and used to study relationships between monolayer structure/properties and electron transfer kinetics at PDI-modified indium-tin oxide (ITO) electrodes. In these PDI molecules, one of the imide substituents is a benzene ring bearing a phosphonic acid (PA) and the other is a bulky aryl group that is twisted out of the plane of the PDI core.

View Article and Find Full Text PDF

This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol-gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium-tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples.

View Article and Find Full Text PDF

Black lipid membranes (BLMs) provide a synthetic environment that facilitates measurement of ion channel activity in diverse analytical platforms. The limited electrical, mechanical and temporal stabilities of BLMs pose a significant challenge to development of highly stable measurement platforms. Here, ethylene glycol dimethacrylate (EGDMA) and butyl methacrylate (BMA) were partitioned into BLMs and photopolymerized to create a cross-linked polymer scaffold in the bilayer lamella that dramatically improved BLM stability.

View Article and Find Full Text PDF

Polymerization of substrate-supported bilayers composed of dienoylphosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability; however, the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl-phosphatidylcholine (mono-SorbPC), bis-dienoyl-phosphatidylcholine (bis-DenPC), and mono-dienoyl phosphatidylcholine (mono-DenPC).

View Article and Find Full Text PDF

Conduction and valence band energies (ECB, EVB) for CdSe nanorods (NRs) functionalized with Au nanoparticle (NP) tips are reported here, referenced to the vacuum scale. We use (a) UV photoemission spectroscopy (UPS) to measure EVB for NR films, utilizing advanced approaches to secondary electron background correction, satellite removal to enhance spectral contrast, and correction for shifts in local vacuum levels; and (b) waveguide-based spectroelectrochemistry to measure ECB from onset potentials for electron injection into NR films tethered to ITO. For untipped CdSe NRs, both approaches show EVB = 5.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) coupled with affinity capture is a well-established method to extract biological analytes from complex samples followed by label-free detection and identification. Many bioanalytes of interest bind to membrane-associated receptors; however, the matrices and high-vacuum conditions inherent to MALDI-TOF MS make it largely incompatible with the use of artificial lipid membranes with incorporated receptors as platforms for detection of captured proteins and peptides. Here we show that cross-linking polymerization of a planar supported lipid bilayer (PSLB) provides the stability needed for MALDI-TOF MS analysis of proteins captured by receptors embedded in the membrane.

View Article and Find Full Text PDF

The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles.

View Article and Find Full Text PDF

Described here is fabrication of a pH-sensitive, optically transparent transducer composed of a planar indium-tin oxide (ITO) electrode overcoated with a a poly(aniline) (PANI) thin film and a porous sol-gel layer. Adsorption of the PANI film renders the ITO electrode sensitive to pH, whereas the sol-gel spin-coated layer makes the upper surface compatible with fusion of phospholipid vesicles to form a planar supported lipid bilayer (PSLB). The response to changes in the pH of the buffer contacting the sol-gel/PANI/ITO electrode is pseudo-Nernstian with a slope of 52 mV/pH over a pH range of 4-9.

View Article and Find Full Text PDF

Three novel polymerizable amphiphiles with a sorbyl-substituted head group were synthesized and systematically characterized. These amphiphiles are neutral in charge. None of these molecules forms vesicles by itself, presumably due to lack of amphiphilicity and/or extensive head group interaction.

View Article and Find Full Text PDF

Using a monolayer of zinc phthalocyanine (ZnPcPA) tethered to indium tin oxide (ITO) as a model for the donor/transparent conducting oxide (TCO) interface in organic photovoltaics (OPVs), we demonstrate the relationship between molecular orientation and charge-transfer rates using spectroscopic, electrochemical, and spectroelectrochemical methods. Both monomeric and aggregated forms of the phthalocyanine (Pc) are observed in ZnPcPA monolayers. Potential-modulated attenuated total reflectance (PM-ATR) measurements show that the monomeric subpopulation undergoes oxidation/reduction with ks,app = 2 × 10(2) s(-1), independent of Pc orientation.

View Article and Find Full Text PDF

Metalated and free-base A(3)B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry.

View Article and Find Full Text PDF

We report on the synthesis of a diverse library of N,N-dimethylamino containing monomers. Subjecting these monomers to Chabrier reaction conditions would yield lipids with polymerizable head groups. This library of lipid head groups is equipped with a variety of arm lengths containing reduction-oxidation polymerizable groups at the terminus.

View Article and Find Full Text PDF