Listening to Korotkoff sounds (K-sounds) to determine systolic and diastolic blood pressure (BP) has been the standard for noninvasive BP measurement in medical practices for nearly 100 years. It is the essential tool used for evaluation and assessment of patients with hypertension and risks of cardiovascular diseases (CVD) by physicians and nurses despite limited understanding of the nature of K-sounds. Analyzing cuff oscillometric signals to obtain BP has been the foundation of most digital BP monitors available today.
View Article and Find Full Text PDFBackground: Obtaining cardiac output (CO) measurements noninvasively during routine blood pressure recording can improve hypertension management. A new method has been developed that estimates cardiac output using pulse-waveform analysis (PWA) from a brachial cuff sphygmomanometer. This study evaluates the ability of PWA to track changes in CO as derived by Doppler ultrasound during dobutamine stimulation.
View Article and Find Full Text PDFBACKGROUND: Both the mercury sphygmomanometer and oscillometric measurement methods are widely in use for pediatric, adult, and geriatric patients. However, inherent differences between the methods of measurement may create varying degrees of sensitivity to age and potentially result in differences between measurements for these two techniques. DESIGN: Measurements of systolic and diastolic blood pressures in 154 subjects were obtained using the mercury sphygmomanometer and pulse dynamic oscillometric methods in accordance with the 1987 Association for the Advancement of Medical Instrumentation guidelines.
View Article and Find Full Text PDFBlood Press Monit
April 1998
BACKGROUND: The accurate measurement of arterial blood pressure is essential for the diagnosis and treatment of hypertension. The development of new automated methods of measurement that provide reliable determinations of blood pressure should be valuable in the assessment of hypertension not only in the clinic or hospital but also, in the home for self-monitoring. DESIGN: We evaluated a noninvasive method for the measurement of systolic and diastolic blood pressures in 132 subjects.
View Article and Find Full Text PDFThe ability not only to record automated systolic and diastolic pressure, but also to derive measurements of the rate of pressure change during the cardiac cycle, would have great potential clinical value. A new method has been developed to obtain pressure measurements at 20-ms intervals by oscillometric cuff signal pattern recognition. Derivation of noninvasive pressure measurements is based on a T tube aorta and straight tube brachial artery, and assumes that the systolic phase of the suprasystolic cuff signal and the diastolic phase of the subdiastolic cuff signal most closely approximate systolic and diastolic aortic pressures, respectively.
View Article and Find Full Text PDFAbnormalities of the arterial pulse waveform reflect changes in cardiovascular structure and function. These abnormalities may occur early in the course of essential hypertension, even before the onset of blood pressure elevation. Previous studies of cardiovascular structure and function have relied on invasive intra-arterial cannulation to obtain the arterial pulse wave.
View Article and Find Full Text PDF