The time-resolved x-ray diffraction platform at the National Ignition Facility (NIF) fields electronic sensors closer to the exploding laser-driven target than any other NIF diagnostic in order to directly detect diffracted x rays from highly compressed materials. We document strategies to characterize and mitigate the unacceptably high background signals observed in this geometry. We specifically assess the possible effects of electromagnetic pulse, x-ray fluorescence, hot electrons, and sensor-specific non-x-ray artifacts.
View Article and Find Full Text PDFThe Flexible Imaging Diffraction Diagnostic for Laser Experiments (FIDDLE) is a new diagnostic at the National Ignition Facility (NIF) designed to observe in situ solid-solid phase changes at high pressures using time resolved x-ray diffraction. FIDDLE currently incorporates five Icarus ultrafast x-ray imager sensors that take 2 ns snapshots and can be tuned to collect X-rays for tens of ns. The platform utilizes the laser power at NIF for both the laser drive and the generation of 10 keV X-rays for ∼10 ns using a Ge backlighter foil.
View Article and Find Full Text PDFAs part of a program to measure phase transition timescales in materials under dynamic compression, we have designed new x-ray imaging diagnostics to record multiple x-ray diffraction measurements during a single laser-driven experiment. Our design places several ns-gated hybrid CMOS (hCMOS) sensors within a few cm of a laser-driven target. The sensors must be protected from an extremely harsh environment, including debris, electromagnetic pulses, and unconverted laser light.
View Article and Find Full Text PDFHardened gated x-ray detectors use photographic film as the data recording medium due to its low sensitivity to the high-yield neutron environments at the National Ignition Facility (NIF). The photographic film is digitized with a Photometric Data Systems (PDS) microdensitometer, which measures the film's optical density. The PDS scanner is able to measure a dynamic range of 0-5 OD; however, raster scanning the film is time consuming and maintenance of the instrument is challenging due to legacy technology.
View Article and Find Full Text PDFBiological systems offer a great many examples of how sophisticated, highly adapted behavior can emerge from training. Here we discuss how training might be used to impart similarly adaptive properties in physical matter. As a special form of materials processing, training differs in important ways from standard approaches of obtaining sought after material properties.
View Article and Find Full Text PDFThe Flexible Imaging Diffraction Diagnostic for Laser Experiments (FIDDLE) is a newly developed diagnostic for imaging time resolved diffraction in experiments at the National Ignition Facility (NIF). It builds on the successes of its predecessor, the Gated Diffraction Development Diagnostic (G3D). The FIDDLE was designed to support eight Daedalus version 2 sensors (six more hCMOS sensors than any other hCMOS-based diagnostic in NIF to date) and an integrated streak camera.
View Article and Find Full Text PDFInertial confinement fusion experiments taking place at the National Ignition Facility are generating ever increasing amounts of fusion energy, with the deuterium tritium fusion neutron yield growing a hundredfold over the past ten years. Strategies must be developed to mitigate this harsh environment's deleterious effects on the operation and the performance of the time-resolved x-ray imagers deployed in the National Ignition Facility target bay to record the dynamics of the implosions. We review the evolution of these imagers in recent years and detail some of the past and present efforts undertaken to maintain or improve the quality of the experimental data collected on high neutron yield experiments.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
We present the development of an experimental platform that can collect four frames of x-ray diffraction data along a single line of sight during laser-driven, dynamic-compression experiments at the National Ignition Facility. The platform is comprised of a diagnostic imager built around ultrafast sensors with a 2-ns integration time, a custom target assembly that serves also to shield the imager, and a 10-ns duration, quasi-monochromatic x-ray source produced by laser-generated plasma. We demonstrate the performance with diffraction data for Pb ramp compressed to 150 GPa and illuminated by a Ge x-ray source that produces ∼7 × 1011, 10.
View Article and Find Full Text PDFNanosecond-gated hybrid complementary metal-oxide semiconductor imaging sensors are a powerful tool for temporally gated and spatially resolved measurements in high energy density science, including inertial confinement fusion, and in laser diagnostics. However, a significant oscillating background excited by photocurrent has been observed in image sequences during testing and in experiments at the National Ignition Facility (NIF). Characterization measurements and simulation results are used to explain the oscillations as the convolution of the pixel-level sensor response with a sensor-wide RLC circuit ringing.
View Article and Find Full Text PDFUnder a sufficiently large load, a solid material will flow via rearrangements, where particles change neighbors. Such plasticity is most easily described in the athermal, quasistatic limit of zero temperature and infinitesimal loading rate, where rearrangements occur only when the system becomes mechanically unstable. For disordered solids, the instabilities marking the onset of rearrangements have long been believed to be fold instabilities, in which an energy barrier disappears and the frequency of a normal mode of vibration vanishes continuously.
View Article and Find Full Text PDFIn order to probe the dynamics of contact-line motion, we study the macroscopic properties of sessile drops deposited on and then aspirated from carefully prepared horizontal surfaces. By measuring the contact angle and drop width simultaneously during droplet removal, we determine the changes in the shape of the drop as it depins and recedes. Our data indicate that there is a force which opposes the motion of the contact line that depends both on the amount of time that the drop has been in contact with the surface and on the withdrawal rate.
View Article and Find Full Text PDFEvolution in time-varying environments naturally leads to adaptable biological systems that can easily switch functionalities. Advances in the synthesis of environmentally responsive materials therefore open up the possibility of creating a wide range of synthetic materials which can also be trained for adaptability. We consider high-dimensional inverse problems for materials where any particular functionality can be realized by numerous equivalent choices of design parameters.
View Article and Find Full Text PDFBistable objects that are pushed between states by an external field are often used as a simple model to study memory formation in disordered materials. Such systems, called hysterons, are typically treated quasistatically. Here, we generalize hysterons to explore the effect of dynamics in a simple spring system with tunable bistability and study how the system chooses a minimum.
View Article and Find Full Text PDFDisordered mechanical systems can deform along a network of pathways that branch and recombine at special configurations called bifurcation points. Multiple pathways are accessible from these bifurcation points; consequently, computer-aided design algorithms have been sought to achieve a specific structure of pathways at bifurcations by rationally designing the geometry and material properties of these systems. Here, we explore an alternative physical training framework in which the topology of folding pathways in a disordered sheet is changed in a desired manner due to changes in crease stiffnesses induced by prior folding.
View Article and Find Full Text PDFDuring the past decade, a number of diagnostic instruments have been developed that utilize electron pulse-dilation to achieve temporal resolution in the 5-30 ps range. These development efforts were motivated by the need for advanced diagnostics for high-energy density physics experiments around the world. The new instruments include single- and multi-frame gated imagers and non-imaging detectors that record continuous data streams.
View Article and Find Full Text PDFIn order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules.
View Article and Find Full Text PDFA particle raft floating on an expanding liquid substrate provides a macroscopic analog for studying material failure. The time scales in this system allow both particle-relaxation dynamics and rift formation to be resolved. In our experiments, a raft, an aggregate of particles, is stretched uniaxially by the expansion of the air-liquid interface on which it floats.
View Article and Find Full Text PDFThis study investigates methods to optimize quasi-monochromatic, ∼10 ns long x-ray sources (XRS) for time-resolved x-ray diffraction measurements of phase transitions during dynamic laser compression measurements at the National Ignition Facility (NIF). To support this, we produce continuous and pulsed XRS by irradiating a Ge foil with NIF lasers to achieve an intensity of 2 × 10 W/cm, optimizing the laser-to-x-ray conversion efficiency. Our x-ray source is dominated by Ge He-α line emission.
View Article and Find Full Text PDFElectron tubes continue to provide the highest speeds possible for recording dynamics of hot high-energy density plasmas. Standard streak camera drive electronics and CCD readout are not compatible with the radiation environment associated with high DT fusion yield inertial confinement fusion experiments >10 14 MeV DT neutrons or >10 n cm ns. We describe a hardened x-ray streak camera developed for the National Ignition Facility and present preliminary results from the first experiment on which it has participated, recording the time-resolved bremsstrahlung spectrum from the core of an inertial confinement fusion implosion at more than 40× the operational neutron yield limit of the previous National Ignition Facility x-ray streak cameras.
View Article and Find Full Text PDFThe hardened single line of sight camera has been recently characterized in preparation for its deployment on the National Ignition Facility. The latest creation based on the pulse-dilation technology leads to many new features and improvements over the previous-generation cameras to provide better quality measurements of inertial confinement fusion experiments, including during high neutron yield implosions. Here, we present the characterization data that illustrate the main performance features of this instrument, such as extended dynamic range and adjustable internal magnification, leading to improved spatial resolution.
View Article and Find Full Text PDFAn initially planar shock wave propagating into a medium of nonuniform density will be perturbed, leading to the generation of postshock velocity perturbations. Using numerical simulations we study this phenomenon in the case of highly nonuniform density (order-unity normalized variance, σ_{ρ}/ρ[over ¯]∼1) and strong shocks (shock Mach numbers M[over ¯]_{s}≳10). This leads to a highly disrupted shock and a turbulent postshock flow.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2022
SignificanceMany protocols used in material design and training have a common theme: they introduce new degrees of freedom, often by relaxing away existing constraints, and then evolve these degrees of freedom based on a rule that leads the material to a desired state at which point these new degrees of freedom are frozen out. By creating a unifying framework for these protocols, we can now understand that some protocols work better than others because the choice of new degrees of freedom matters. For instance, introducing particle sizes as degrees of freedom to the minimization of a jammed particle packing can lead to a highly stable state, whereas particle stiffnesses do not have nearly the same impact.
View Article and Find Full Text PDF