The influence of four-particle correlations on the nonlinear optics of a semiconductor microcavity is determined by a pump-and-probe investigation. Experiments are performed on a nonmonolithic microcavity which contains a ZnSe quantum well. In this system the biexciton binding energy exceeds both the normal-mode splitting between exciton and cavity mode and all damping constants.
View Article and Find Full Text PDFSix-wave mixing in a ZnSe quantum well is investigated and compared with microscopic theory. We demonstrate that sixth-order Coulomb correlations have a significant qualitative impact on the nonlinear optical response. Six-wave mixing is shown to be a uniquely sensitive tool for investigation of correlations beyond the four-point level.
View Article and Find Full Text PDFDeep photoresist gratings, slanted as well as unslanted, were produced holographically in clear Shipley 1400 photoresist. The diffraction efficiencies of these gratings were measured as a function of incident angle for three wavelengths with polarization perpendicular to the plane of incidence. It is shown that the results agree fairly well with those predicted by Kogelnik's two-wave theory, indicating that these relief gratings behave like volume holograms.
View Article and Find Full Text PDF