Publications by authors named "SP Obenschain"

Argon fluoride (ArF) is currently the shortest wavelength laser that can credibly scale to the energy and power required for high gain inertial fusion. ArF's deep ultraviolet light and capability to provide much wider bandwidth than other contemporary inertial confinement fusion (ICF) laser drivers would drastically improve the laser target coupling efficiency and enable substantially higher pressures to drive an implosion. Our radiation hydrodynamics simulations indicate gains greater than 100 are feasible with a sub-megajoule ArF driver.

View Article and Find Full Text PDF

The Nike KrF laser facility was used to study the evolution of isolated defects with characteristic sizes of <1 to 10s of μm in laser-accelerated plastic foils. The experimental platform permitted, for the first time, the systematic study of localized perturbation growth, which is inherently multimode, through ablative Richtmyer-Meshkov and Rayleigh-Taylor stages and into the strongly nonlinear regime. Initial target defects were relatively large amplitude, but spatially localized, and emulated tent, fill-tube, and other nonuniformities that are present in inertial confinement fusion capsules.

View Article and Find Full Text PDF

Cross-beam energy transfer (CBET) is a significant energy-loss mechanism in directly driven inertial-confinement-fusion (ICF) targets. One strategy for mitigating CBET is to increase the bandwidth of the laser light, thereby disrupting the resonant three-wave interactions that underlie this nonlinear scattering process. Here, we report on numerical simulations performed with the wave-based code lpse that show a significant reduction in CBET for bandwidths of 2-5 THz (corresponding to a normalized bandwidth of 0.

View Article and Find Full Text PDF

A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al.

View Article and Find Full Text PDF

Imprinting of laser nonuniformity is a limiting factor in direct-drive inertial confinement fusion experiments, particularly when available laser smoothing is limited. A thin (∼400  Å) high-Z metal coating is found to substantially suppress laser imprint for planar targets driven by pulse shapes and intensities relevant to implosions on the National Ignition Facility while retaining low adiabat target acceleration. A hybrid of indirect and direct drive, this configuration results in initial ablation by x rays from the heated high-Z layer, creating a large standoff for perturbation smoothing.

View Article and Find Full Text PDF

In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming.

View Article and Find Full Text PDF

An experimental study of hydrodynamic perturbation evolution in a strong unsupported shock wave, which is immediately followed by an expansion wave, is reported. A planar solid plastic target rippled on the front side is irradiated with a 350-450 ps long laser pulse. The perturbation evolution in the target is observed using face-on monochromatic x-ray radiography during and for up to 4 ns after the laser pulse.

View Article and Find Full Text PDF

In inertial confinement fusion (ICF), the possibility of ignition or high energy gain is largely determined by our ability to control the Rayleigh-Taylor (RT) instability growth in the target. The exponentially amplified RT perturbation eigenmodes are formed from all sources of the target and radiation non-uniformity in a process called seeding. This process involves a variety of physical mechanisms that are somewhat similar to the classical Richtmyer-Meshkov (RM) instability (in particular, most of them are active in the absence of acceleration), but differ from it in many ways.

View Article and Find Full Text PDF

Experimental study of a shock-decelerated ablation front is reported. A planar solid plastic target is accelerated by a laser across a vacuum gap and collides with a lower-density plastic foam layer. While the target is accelerated, a fast Rayleigh-Taylor (RT) growth of the seeded single-mode perturbation at the ablation front is observed.

View Article and Find Full Text PDF

An imaging spectrometer was designed and fabricated for recording far ultraviolet spectra from laser-produced plasmas with wavelengths as short as 155 nm. The spectrometer implements a Cassegrain telescope and two gratings in a tandem Wadsworth optical configuration that provides diffraction limited resolution. Spectral images were recorded from plasmas produced by the irradiation of various target materials by intense KrF laser radiation with 248 nm wavelength.

View Article and Find Full Text PDF

"Feedout" means the transfer of mass perturbations from the rear to the front surface of a driven target. When a planar shock wave breaks out at a rippled rear surface of the target, a lateral pressure gradient drives sonic waves in a rippled rarefaction wave propagating back to the front surface. This process redistributes mass in the volume of the target, forming the feedout-generated seed for ablative Rayleigh-Taylor (RT) instability.

View Article and Find Full Text PDF

We report the first direct experimental observation of the ablative Richtmyer-Meshkov instability. It manifests itself in oscillations of areal mass that occur during the shock transit time, which are caused by the "rocket effect" or dynamic overpressure characteristic of interaction between the laser absorption zone and the ablation front. With the 4-ns-long Nike KrF laser pulse and our novel diagnostic technique (monochromatic x-ray imaging coupled to a streak camera) we were able to register a peak and a valley of the areal-mass variation before the observed onset of the Rayleigh-Taylor growth.

View Article and Find Full Text PDF