Publications by authors named "SM Wiggins"

Sperm whales exhibit sexual dimorphism and sex-specific latitudinal segregation. Females and their young form social groups and are usually found in temperate and tropical latitudes, while males forage at higher latitudes. Historical whaling data and rare sightings of social groups in high latitude regions of the North Pacific, such as the Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BSAI), suggest a more complex distribution than previously understood.

View Article and Find Full Text PDF

Where's Whaledo is a software toolkit that uses a combination of automated processes and user interfaces to greatly accelerate the process of reconstructing animal tracks from arrays of passive acoustic recording devices. Passive acoustic localization is a non-invasive yet powerful way to contribute to species conservation. By tracking animals through their acoustic signals, important information on diving patterns, movement behavior, habitat use, and feeding dynamics can be obtained.

View Article and Find Full Text PDF

Eclipse Sound, in the northeastern Canadian Arctic, has experienced a substantial increase in ship traffic due to growing tourism and industrial development in the region. This study aims to describe the natural soundscape as well as to assess the noise levels associated with shipping. Underwater sound recordings were collected at two locations: Eastern Eclipse Sound (72° 43.

View Article and Find Full Text PDF

Laser wakefield accelerators (LWFAs) can produce high-energy electron bunches in short distances. Successfully coupling these sources with undulators has the potential to form an LWFA-driven free-electron laser (FEL), providing high-intensity short-wavelength radiation. Electron bunches produced from LWFAs have a correlated distribution in longitudinal phase space: a chirp.

View Article and Find Full Text PDF

Localization and tracking of marine animals can reveal key insights into their behaviors underwater that would otherwise remain unexplored. A promising nonintrusive approach to obtaining location information of marine animals is to process their bioacoustic signals, which are passively recorded using multiple hydrophones. In this paper, a data processing chain that automatically detects and tracks multiple odontocetes (toothed whales) in three dimensions (3-D) from their echolocation clicks recorded with volumetric hydrophone arrays is proposed.

View Article and Find Full Text PDF

The container shipping line Maersk undertook a Radical Retrofit to improve the energy efficiency of twelve sister container ships. Noise reduction, identified as a potential added benefit of the retrofitting effort, was investigated in this study. A passive acoustic recording dataset from the Santa Barbara Channel off Southern California was used to compile over 100 opportunistic vessel transits of the twelve G-Class container ships, pre- and post-retrofit.

View Article and Find Full Text PDF

Successful conservation and management of marine top predators rely on detailed documentation of spatiotemporal behavior. For cetacean species, this information is key to defining stocks, habitat use, and mitigating harmful interactions. Research focused on this goal is employing methodologies such as visual observations, tag data, and passive acoustic monitoring (PAM) data.

View Article and Find Full Text PDF

Bowhead whales (Balaena mysticetus) face threats from diminishing sea ice and increasing anthropogenic activities in the Arctic. Passive acoustic monitoring is the most effective means for monitoring their distribution and population trends, based on the detection of their calls. Passive acoustic monitoring, however, is influenced by the sound propagation environment and ambient noise levels, which impact call detection probability.

View Article and Find Full Text PDF

Passive acoustic monitoring (PAM) has proven a powerful tool for the study of marine mammals, allowing for documentation of biologically relevant factors such as movement patterns or animal behaviors while remaining largely non-invasive and cost effective. From 2008-2019, a set of PAM recordings covering the frequency band of most toothed whale (odontocete) echolocation clicks were collected at sites off the islands of Hawai'i, Kaua'i, and Pearl and Hermes Reef. However, due to the size of this dataset and the complexity of species-level acoustic classification, multi-year, multi-species analyses had not yet been completed.

View Article and Find Full Text PDF

A combination of machine learning and expert analyst review was used to detect odontocete echolocation clicks, identify dominant click types, and classify clicks in 32 years of acoustic data collected at 11 autonomous monitoring sites in the western North Atlantic between 2016 and 2019. Previously-described click types for eight known odontocete species or genera were identified in this data set: Blainville's beaked whales (Mesoplodon densirostris), Cuvier's beaked whales (Ziphius cavirostris), Gervais' beaked whales (Mesoplodon europaeus), Sowerby's beaked whales (Mesoplodon bidens), and True's beaked whales (Mesoplodon mirus), Kogia spp., Risso's dolphin (Grampus griseus), and sperm whales (Physeter macrocephalus).

View Article and Find Full Text PDF

Small explosive charges, called seal bombs, used by commercial fisheries to deter marine mammals from depredation and accidental bycatch during fishing operations, produce high level sounds that may negatively impact nearby animals. Seal bombs were exploded underwater and recorded at various ranges with a calibrated hydrophone to characterize the pulse waveforms and to provide appropriate propagation loss models for source level (SL) estimates. Waveform refraction became important at about 1500 m slant range with approximately spherical spreading losses observed at shorter ranges.

View Article and Find Full Text PDF

Commercial shipping is the dominant source of low-frequency noise in the ocean. It has been shown that the noise radiated by an individual vessel depends upon the vessel's speed. This study quantified the reduction in source levels (SLs) and sound exposure levels (SELs) for ships participating in two variations of a vessel speed reduction (VSR) program.

View Article and Find Full Text PDF

Attosecond duration relativistic electron bunches travelling through an undulator can generate brilliant coherent radiation in the visible to vacuum ultraviolet spectral range. We present comprehensive numerical simulations to study the properties of coherent emission for a wide range of electron energies and bunch durations, including space-charge effects. These demonstrate that electron bunches with r.

View Article and Find Full Text PDF

An empirical model for wind-generated underwater noise is presented that was developed using an extensive dataset of acoustic field recordings and a global wind model. These data encompass more than one hundred years of recording-time and capture high wind events, and were collected both on shallow continental shelves and in open ocean deep-water settings. The model aims to explicitly separate noise generated by wind-related sources from noise produced by anthropogenic sources.

View Article and Find Full Text PDF

Distribution models are needed to understand spatiotemporal patterns in cetacean occurrence and to mitigate anthropogenic impacts. Shipboard line-transect visual surveys are the standard method for estimating abundance and describing the distributions of cetacean populations. Ship-board surveys provide high spatial resolution but lack temporal resolution and seasonal coverage.

View Article and Find Full Text PDF

We report how the complex intra-pulse polarization dynamics of coherent optical wavebreaking and incoherent Raman amplification processes in all-normal dispersion (ANDi) fibers vary for femto and picosecond pump pulses. Using high temporal resolution vector supercontinuum simulations, we identify deterministic polarization dynamics caused by wavebreaking and self-phase modulation for femtosecond pulses and quasi-chaotic polarization evolution driven by Raman amplification of quantum noise for picosecond pulses. In contrast to cross-phase modulation instability, the Raman-based polarization noise has no power threshold and is reduced by aligning the higher energy polarization component with the lower index axis of the fiber.

View Article and Find Full Text PDF

Passive acoustic monitoring has become an important data collection method, yielding massive datasets replete with biological, environmental and anthropogenic information. Automated signal detectors and classifiers are needed to identify events within these datasets, such as the presence of species-specific sounds or anthropogenic noise. These automated methods, however, are rarely a complete substitute for expert analyst review.

View Article and Find Full Text PDF

The increased inertia of very high-energy electrons (VHEEs) due to relativistic effects reduces scattering and enables irradiation of deep-seated tumours. However, entrance and exit doses are high for collimated or diverging beams. Here, we perform a study based on Monte Carlo simulations of focused VHEE beams in a water phantom, showing that dose can be concentrated into a small, well-defined volumetric element, which can be shaped or scanned to treat deep-seated tumours.

View Article and Find Full Text PDF

Objective: To derive an optimal liver stiffness measurement cut point to discriminate METAVIR fibrosis stage F4 and to validate both METAVIR fibrosis stage F3-F4 and F4 cut points in a separate cohort.

Study Design: Patients at Boston Children's Hospital with liver stiffness measurement from 2006 to 2016 and liver biopsy ≤12 months before screening were eligible. Patients enrolled 2006-2011 were used to calibrate liver stiffness measurement cut points and those enrolled 2011-2016 for validation.

View Article and Find Full Text PDF

Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types.

View Article and Find Full Text PDF

Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating.

View Article and Find Full Text PDF

Underwater radiated noise from merchant ships was measured opportunistically from multiple spatial aspects to estimate signature source levels and directionality. Transiting ships were tracked via the Automatic Identification System in a shipping lane while acoustic pressure was measured at the ships' keel and beam aspects. Port and starboard beam aspects were 15°, 30°, and 45° in compliance with ship noise measurements standards [ANSI/ASA S12.

View Article and Find Full Text PDF

Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies.

View Article and Find Full Text PDF

Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics.

View Article and Find Full Text PDF

Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics.

View Article and Find Full Text PDF