Publications by authors named "SHEPPARD H"

Background: One of the key functions of human skin is to provide a barrier, protecting the body from the surrounding environment and maintaining homeostasis of the internal environment. A mature, stratified epidermis is critical to achieve skin barrier function and is particularly important when producing skin grafts in vitro for wound treatment. For decades epidermal stratification has been achieved in vitro by culturing keratinocytes at an air-liquid interface, triggering proliferating basal keratinocytes to differentiate and form all epidermal layers.

View Article and Find Full Text PDF

Background: Oncofetal splice variants of extracellular matrix (ECM) proteins present a unique group of target antigens for the immunotherapy of pediatric cancers. However, limited data is available if these splice variants can be targeted with T cells expressing chimeric antigen receptors (CARs).

Methods: To determine the expression of the oncofetal version of tenascin C (TNC) encoding the C domain (C.

View Article and Find Full Text PDF
Article Synopsis
  • c-MYC is a crucial factor in the development of high-risk neuroblastoma, and the lack of mouse models has limited research on its mechanisms and therapy development.
  • Inducing c-MYC through different promoters showed varied tumor types: using a tyrosine hydroxylase promoter led to pancreatic tumors, while a dopamine β-hydroxylase promoter resulted in neuroblastoma.
  • The neuroblastoma tumors in mice exhibited similar characteristics to human neuroblastoma and responded to existing treatments, highlighting the importance of these models for testing new therapies.
View Article and Find Full Text PDF

Immune synapse (IS) formation determines T cell antitumor activity. Here, we present a protocol for characterizing the IS formation between chimeric antigen receptor (CAR) T cells and tumor cells by measuring the IS size and calcium flux by live-cell imaging. We describe steps for CAR T cell manufacturing, sample preparation, image acquisition, and data analysis.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of certain proteins in regulating CXCR4, which is crucial for B-cell movement and function in the germinal center.
  • It highlights that the absence of specific genes can lead to abnormal B-cell development, increased mutation rates, and a high risk of developing aggressive B-cell cancers in mice.
  • Additionally, the study suggests that these gene deficiencies create a model that mimics human aggressive B-cell lymphomas, offering insights into the mechanisms behind these blood cancers.
View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted to compare the effects of dimensional (AMPD) and categorical personality disorder models on prejudice toward individuals with borderline personality disorder (BPD) among college students.
  • The research involved 183 psychology undergraduates who were split into three groups and assessed on their levels of prejudice after receiving information about BPD.
  • While there was no overall difference in prejudice levels, the AMPD model promoted beliefs in a spectrum of personality traits and thus encouraged seeing people with BPD as part of an ingroup, leading to an indirect reduction in prejudice.
View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a pediatric tumor that resembles undifferentiated muscle cells; yet the extent to which cell state heterogeneity is shared with human development has not been described. Using single-cell/nucleus RNA sequencing from patient tumors, patient-derived xenografts, primary in vitro cultures, and cell lines, we identify four dominant muscle-lineage cell states: progenitor, proliferative, differentiated, and ground cells. We stratify these RMS cells/nuclei along the continuum of human muscle development and show that they share expression patterns with fetal/embryonal myogenic precursors rather than postnatal satellite cells.

View Article and Find Full Text PDF

Gene therapy based on the CRISPR/Cas9 system has emerged as a promising strategy for treating the monogenic fragile skin disorder recessive dystrophic epidermolysis bullosa (RDEB). With this approach problematic wounds could be grafted with gene edited, patient-specific skin equivalents. Precise gene editing using homology-directed repair (HDR) is the ultimate goal, however low efficiencies have hindered progress.

View Article and Find Full Text PDF
Article Synopsis
  • Neuroblastoma is a common pediatric cancer characterized by poor clinical outcomes and chemotherapy resistance, prompting a need to better understand patient tumor variability and preclinical models.
  • Researchers used single-cell RNA sequencing to analyze neuroblastoma cell lines, patient-derived xenografts, and genetically engineered mouse models, employing a machine learning approach to compare gene expression profiles.
  • The study revealed a weakly expressed mesenchymal-like gene program in some high-risk patient tumors that may be chemotherapy-induced, highlighting a potential escape mechanism from treatment and improving the understanding of tumor diversity in neuroblastoma.
View Article and Find Full Text PDF

Precision gene editing in primary hematopoietic stem and progenitor cells (HSPCs) would facilitate both curative treatments for monogenic disorders as well as disease modelling. Precise efficiencies even with the CRISPR/Cas system, however, remain limited. Through an optimization of guide RNA delivery, donor design, and additives, we have now obtained mean precise editing efficiencies >90% on primary cord blood HSCPs with minimal toxicity and without observed off-target editing.

View Article and Find Full Text PDF

Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo consolidation therapy-a discrepancy that has never been explained. To investigate this, we treated a large cohort of neuroblastoma cell lines with RA and observed that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Sialidosis is a glycoprotein storage disease caused by a deficiency of the enzyme NEU1, leading to the buildup of sialylated proteins in various tissues and a range of systemic and neurological symptoms.
  • Research involving Neu1 mice, which model the severe form of the disease, showed that treatment with AAV-mediated gene therapy restored NEU1 activity, improved tissue conditions, and eliminated lysosomal vacuolization.
  • The findings suggest that this gene therapy approach could be an effective treatment for sialidosis and potentially other diseases linked to low NEU1 levels.
View Article and Find Full Text PDF

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis.

View Article and Find Full Text PDF

Neuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generated single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM).

View Article and Find Full Text PDF

Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow.

View Article and Find Full Text PDF

Dopamine (DA) acts in various key neurological and physiological processes as both a neurotransmitter and circulating hormone. Over the past several decades, the DA signaling network has been shown to regulate the progression of several types of solid tumors, and considerable evidence has shown it is a druggable pathway in the cancer cell context. However, the specific activity and effect of these pathway components appears to be tissue-type and cell-context-dependent.

View Article and Find Full Text PDF

The MYC proto-oncogenes (c-MYC, , ) are among the most deregulated oncogenic drivers in human malignancies including high-risk neuroblastoma, 50% of which are -amplified. Genetically engineered mouse models (GEMMs) based on the transgene have greatly expanded the understanding of neuroblastoma biology and are powerful tools for testing new therapies. However, a lack of c-MYC-driven GEMMs has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and therapy development given that c-MYC is also an important driver of many high-risk neuroblastomas.

View Article and Find Full Text PDF

The emergence of immune escape is a significant roadblock to developing effective chimeric antigen receptor (CAR) T cell therapies against hematological malignancies, including acute myeloid leukemia (AML). Here, we demonstrate feasibility of targeting two antigens simultaneously by combining a GRP78-specific peptide antigen recognition domain with a CD123-specific scFv to generate a peptide-scFv bispecific antigen recognition domain (78.123).

View Article and Find Full Text PDF
Article Synopsis
  • Neuroblastoma is a type of cancer that affects kids and comes from certain developing nerve cells, and it can be really complicated with different types of cells in each tumor.
  • Researchers studied 55 tumors from kids with neuroblastoma using advanced techniques to learn more about how these cancer cells work and act in the body.
  • They discovered that the tumors have different groups of cells that can affect how serious the cancer is and how well kids can respond to treatment, and all their findings are shared online for other scientists to use.
View Article and Find Full Text PDF

Immunotherapy with CAR T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons (CSE) present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify CSE targets, we analyzed 1,532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow.

View Article and Find Full Text PDF

The limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor.

View Article and Find Full Text PDF

Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapβ2 and resulted in modest cytoplasmic accumulation of hnRNPH2.

View Article and Find Full Text PDF