Publications by authors named "SG Louie"

We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green's function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.

View Article and Find Full Text PDF

On the basis of first-principles calculations, we investigate transport properties of spin-polarized electrons in defective metallic single-wall carbon nanotubes (SWCNTs) under homogeneous transverse electric fields. Either vacancies or carbon adatoms are introduced in (10,10) SWCNT and are shown to play a role of quasi-localized magnetic impurities. The applied transverse electric fields change the relative position of the energy levels of the defects with respect to the Fermi energy so that the spin-polarized conductances are shown to be tunable.

View Article and Find Full Text PDF

Alpha-antitrypsin (AAT) is a serine protease inhibitor, which inhibits the proteolytic enzyme elastase. Individuals with a deficiency of AAT may develop clinical manifestations that include a decline in lung function. Deficiency of AAT can lead to many clinical manifestations, most commonly chronic obstructive pulmonary disease in the form of emphysema.

View Article and Find Full Text PDF

We present a first-principles investigation of the phonon-induced electron self-energy in graphene. The energy dependence of the self-energy reflects the peculiar linear band structure of graphene and deviates substantially from the usual metallic behavior. The effective band velocity of the Dirac fermions is found to be reduced by 4%-8%, depending on doping, by the interaction with lattice vibrations.

View Article and Find Full Text PDF

STM studies on K(x)C(60) monolayers reveal new behavior over a wide range of the phase diagram. As x increases from 3 to 5 K(x)C(60) monolayers undergo metal-insulator-metal reentrant phase transitions and exhibit a variety of novel orientational orderings, including a complex 7-molecule, pinwheel-like structure. The proposed driving mechanism for the orientational ordering is the lowering of electron kinetic energy by maximizing the overlap of neighboring molecular orbitals.

View Article and Find Full Text PDF

A combination of theory and experiment is used to quantitatively understand the conductance of single-molecule benzenediamine-gold junctions. A newly developed analysis is applied to a measured junction conductance distribution, based on 59 000 individual conductance traces, which has a clear peak at 0.0064 G0 and a width of +/-47%.

View Article and Find Full Text PDF

We present a first-principles calculation of the optical properties of armchair-edged graphene nanoribbons (AGNRs) with many-electron effects included. The reduced dimensionality of the AGNRs gives rise to an enhanced electron-hole binding energy for both bright and dark exciton states (0.8-1.

View Article and Find Full Text PDF

We have observed reversible light-induced mechanical switching for individual organic molecules bound to a metal surface. Scanning tunneling microscopy (STM) was used to image the features of individual azobenzene molecules on Au(111) before and after reversibly cycling their mechanical structure between trans and cis states using light. Azobenzene molecules were engineered to increase their surface photomechanical activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the azobenzene phenyl rings.

View Article and Find Full Text PDF

We extend previous ab initio calculations on excitonic effects in metallic single-walled carbon nanotubes to more experimentally realizable larger diameter tubes. Our calculations predict bound exciton states in both the (10,10) and (12,0) tubes with binding energies of approximately 50 meV providing experimentally verifiable changes to the absorption line shape in each case. The second and third van Hove singularities in the joint density of states also give rise to a single optically active bound or resonant excitonic state.

View Article and Find Full Text PDF

A drawback of extensive coxib use for antitumor purposes is the risk of life-threatening side effects that are thought to be a class effect and probably due to the resulting imbalance of eicosanoid levels. 2,5-Dimethyl-celecoxib (DMC) is a close structural analogue of the selective cyclooxygenase-2 inhibitor celecoxib that lacks cyclooxygenase-2-inhibitory function but that nonetheless is able to potently mimic the antitumor effects of celecoxib in vitro and in vivo. To further establish the potential usefulness of DMC as an anticancer agent, we compared DMC and various coxibs and nonsteroidal anti-inflammatory drugs with regard to their ability to stimulate the endoplasmic reticulum (ER) stress response (ESR) and subsequent apoptotic cell death.

View Article and Find Full Text PDF

Electron-phonon (e-ph) renormalization effects in a model cuprate system CaCuO2 are studied by employing density functional theory based methods. Whereas calculations based on the local spin-density approximation (LSDA) predicts negligible e-ph coupling effects of the half-breathing Cu-O bond stretching mode, the inclusion of a screened on-site Coulomb interaction (U) in the LSDA+U calculations greatly enhances the e-ph coupling strength of this mode. The full-breathing mode, on the other hand, shows a much weaker e-ph renormalization effect.

View Article and Find Full Text PDF

Recent scanning tunneling microscopy studies of individual organic molecules on Si(001) reported negative differential resistance (NDR) above a critical applied field, observations explained by a resonant tunneling model proposed prior to the experiments. Here we use both density functional theory and a many-electron GW self-energy approach to quantitatively assess the viability of this mechanism in hybrid junctions with organic molecules on Si. For cyclopentene on p-type Si(001), the frontier energy levels are calculated to be independent of applied electric fields, ruling out the proposed mechanism for NDR.

View Article and Find Full Text PDF

We present a first-principles technique for investigating the electron-phonon interaction with millions of k points in the Brillouin zone, which exploits the spatial localization of electronic and lattice Wannier functions. We demonstrate the effectiveness of our technique by elucidating the phonon mechanism responsible for superconductivity in boron-doped diamond. Our calculated phonon self-energy and Eliashberg spectral function show that superconductivity cannot be explained without taking into account the finite-wave-vector Fourier components of the vibrational modes introduced by boron, as well as the breaking of the diamond crystal periodicity induced by doping.

View Article and Find Full Text PDF

Unlabelled: HBV is a major risk factor for hepatocellular carcinoma (HCC). However, whether HBV can directly cause HCC or only indirectly via the induction of chronic liver inflammation has been controversial. By using transgenic mice carrying the entire HBV genome as a model, we now demonstrate that HBV by itself is an inefficient carcinogen.

View Article and Find Full Text PDF

Based on a first-principles approach, we present scaling rules for the band gaps of graphene nanoribbons (GNRs) as a function of their widths. The GNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen passivation. Both varieties of ribbons are shown to have band gaps.

View Article and Find Full Text PDF

The electronic structure of benzene on graphite (0001) is computed using the GW approximation for the electron self-energy. The benzene quasiparticle energy gap is predicted to be 7.2 eV on graphite, substantially reduced from its calculated gas-phase value of 10.

View Article and Find Full Text PDF

Molecular dynamics simulations of coaxial carbon nanotubes in relative sliding motion reveal a striking enhancement of friction when phonons whose group velocity is close to the sliding velocity of the nanotubes are strongly excited. The effect is analogous to the dramatic increase in air drag experienced by aircraft flying close to the speed of sound but differs in that it can occur in multiple velocity ranges with varying magnitude, depending on the atomic level structures of the nanotubes. The phenomenon is a general one that may occur in other nanoscale mechanical systems.

View Article and Find Full Text PDF

Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals--for example, the Heusler compounds--and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials.

View Article and Find Full Text PDF

Tunable Raman spectroscopy is used to measure the optical transition energies Eii of individual single wall carbon nanotubes. Eii is observed to shift down in energy by as much as 50 meV, from -160 to 300 degrees C, in contrast with previous measurements performed on nanotubes in alternate environments, which show upshifts and downshifts in Eii with temperature. We determine that electron-phonon coupling explains our experimental observations of nanotubes suspended in air, neglecting thermal expansion.

View Article and Find Full Text PDF

We report first-principles calculations of the effects of quasiparticle self-energy and electron-hole interaction on the optical properties of single-walled boron nitride nanotubes. Excitonic effects are shown to be even more important in BN nanotubes than in carbon nanotubes. Electron-hole interactions give rise to complexes of bright (and dark) excitons, which qualitatively alter the optical response.

View Article and Find Full Text PDF

Objective: To review available literature on the pharmacology, pharmacokinetics, dosing and administration, efficacy, and safety of the antiviral nucleoside analog telbivudine.

Data Sources: Information was obtained from searching MEDLINE (1966-December 2005), International Pharmaceutical Abstracts (1970-December 2005), and the Cochrane Database of Systematic Reviews (4th quarter 2005) using the search words telbivudine, L-dT, L-deoxythymidine, L-nucleosides, and nucleosides. Abstracts from the Annual Meeting of the American Association for the Study of Liver Diseases and European Association for the Study of the Liver were also searched, including bibliographies from the identified articles.

View Article and Find Full Text PDF

We present a theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is, however, a rapid increasing function of the exciton momentum.

View Article and Find Full Text PDF

The electronic structures of carbon nanotubes doped with oxygen dimers are studied using the ab initio pseudopotential density functional method. The fundamental energy gap of zigzag semiconducting nanotubes exhibits a strong dependence on both the concentration and configuration of oxygen-dimer defects that substitute for carbon atoms in the tubes and on the tube chiral index. For a certain type of zigzag nanotube when doped with oxygen dimers, the energy gap is closed and the tube becomes semimetallic.

View Article and Find Full Text PDF

We present first-principles calculations of quantum transport which show that the resistance of metallic carbon nanotubes can be changed dramatically with homogeneous transverse electric fields if the nanotubes have impurities or defects. The change of the resistance is predicted to range over more than 2 orders of magnitude with experimentally attainable electric fields. This novel property has its origin that backscattering of conduction electrons by impurities or defects in the nanotubes is strongly dependent on the strength and/or direction of the applied electric fields.

View Article and Find Full Text PDF

We used simulations with a classical force field to study the transformation under hydrostatic pressure of isolated single-walled nanotubes (SWNT) from a circular to a collapsed cross section. Small-diameter SWNTs deform continuously under pressure, whereas larger-diameter SWNTs display hysteresis and undergo a first-order-like transformation. The different behavior is due to the changing proportions in the total energy of the wall-curvature energy and the van der Waals attraction between opposite walls of the tube.

View Article and Find Full Text PDF