We present a model for quasi-phase matching (QPM) in high-order harmonic generation (HHG). Using a one-dimensional description, we analyze the time-dependent, ultrafast wave-vector balance to calculate the on-axis harmonic output versus time, from which we obtain the output pulse energy. Considering, as an example, periodically patterned argon gas, as may be provided with a grid in a cluster jet, we calculate the harmonic output during different time intervals within the drive laser pulse duration.
View Article and Find Full Text PDFWe experimentally investigate spectral control of high-harmonic generation in a wide-diameter (508 μm) capillary that allows using significantly lower gas pressures coupled with elevated drive laser energies to achieve higher harmonic energies. Using phase shaping to change the linear chirp of the drive laser pulses, we observe wavelength tuning of the high-harmonic output to both larger and smaller values. Comparing tuning via the gas pressure with the amount of blue shift in the transmitted drive laser spectrum, we conclude that both adiabatic and non-adiabatic effects cause pulse-shaping induced tuning of high harmonics.
View Article and Find Full Text PDFFor exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry.
View Article and Find Full Text PDFChemical analyses of U.S. stockpiled mustard chemical warfare agent show some agent destined for destruction contains mercury [L.
View Article and Find Full Text PDFPhys Rev Lett
February 2005
It is widely believed that harmonics are suppressed in helical wigglers. However, linear harmonic generation (LHG) occurs by an azimuthal resonance that excites circularly polarized, off-axis waves, where the hth harmonic varies as exp((ihtheta). Nonlinear harmonic generation (NHG) is driven by bunching at the fundamental and has different properites from LHG.
View Article and Find Full Text PDFWe report on an experimental investigation characterizing the output of a high-gain harmonic-generation (HGHG) free-electron laser (FEL) at saturation. A seed CO2 laser at a wavelength of 10.6 microm was used to generate amplified FEL output at 5.
View Article and Find Full Text PDFSelf-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point.
View Article and Find Full Text PDFExperimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis.
View Article and Find Full Text PDFA high-gain harmonic-generation free-electron laser is demonstrated. Our approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser. A seed carbon dioxide laser at a wavelength of 10.
View Article and Find Full Text PDF