Publications by authors named "SFB Tett"

Attribution of compound events informs preparedness for emerging hazards with disproportionate impacts. However, the task remains challenging because space-time interactions among extremes and uncertain dynamic changes are not satisfactorily addressed in the well-established attribution framework. For attributing the 2020 record-breaking spatially compounding flood-heat event in China, we conduct a storyline attribution analysis by designing simulation experiments via a weather forecast model, quantifying component-based attributable changes, and comparing with historical flow analogs.

View Article and Find Full Text PDF

West Antarctica has experienced dramatic ice losses contributing to global sea-level rise in recent decades, particularly from Pine Island and Thwaites glaciers. Although these ice losses manifest an ongoing Marine Ice Sheet Instability, projections of their future rate are confounded by limited observations along West Antarctica's coastal perimeter with respect to how the pace of retreat can be modulated by variations in climate forcing. Here, we derive a comprehensive, 12-year record of glacier retreat around West Antarctica's Pacific-facing margin and compare this dataset to contemporaneous estimates of ice flow, mass loss, the state of the Southern Ocean and the atmosphere.

View Article and Find Full Text PDF

The severe drought of the 1930s Dust Bowl decade coincided with record-breaking summer heatwaves that contributed to the socio-economic and ecological disaster over North America's Great Plains. It remains unresolved to what extent these exceptional heatwaves, hotter than in historically forced coupled climate model simulations, were forced by sea surface temperatures (SSTs) and exacerbated through human-induced deterioration of land cover. Here we show, using an atmospheric-only model, that anomalously warm North Atlantic SSTs enhance heatwave activity through an association with drier spring conditions resulting from weaker moisture transport.

View Article and Find Full Text PDF

Compared to individual hot days/nights, compound hot extremes that combine daytime and nighttime heat are more impactful. However, past and future changes in compound hot extremes as well as their underlying drivers and societal impacts remain poorly understood. Here we show that during 1960-2012, significant increases in Northern Hemisphere average frequency (~1.

View Article and Find Full Text PDF

As climate change research becomes increasingly applied, the need for actionable information is growing rapidly. A key aspect of this requirement is the representation of uncertainties. The conventional approach to representing uncertainty in physical aspects of climate change is probabilistic, based on ensembles of climate model simulations.

View Article and Find Full Text PDF

During the Paris Conference in 2015, nations of the world strengthened the United Nations Framework Convention on Climate Change by agreeing to holding "the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C"1. However, "pre-industrial" was not defined.

View Article and Find Full Text PDF
Article Synopsis
  • Empirical studies of Northern Hemisphere temperatures over the last millennium show small fluctuations followed by significant warming in the last 200 years.
  • A coupled atmosphere-ocean model simulation was used to evaluate the effectiveness of these empirical reconstruction methods, especially over longer time scales.
  • The findings indicate that existing methods likely underestimate the variability in historical temperatures by at least two times, suggesting past climate variations were more significant than previously thought.
View Article and Find Full Text PDF

Recent work suggests a discernible human influence on climate. This finding is supported, with less restrictive assumptions than those used in earlier studies, by a 1961 through 1995 data set of radiosonde observations and by ensembles of coupled atmosphere-ocean simulations forced with changes in greenhouse gases, tropospheric sulfate aerosols, and stratospheric ozone. On balance, agreement between the simulations and observations is best for a combination of greenhouse gas, aerosol, and ozone forcing.

View Article and Find Full Text PDF