Publications by authors named "SE Vigdor"

In order to address dosimetry demands during proton therapy treatments utilizing pencil beam scanning and/or pulsed beam accelerators, we have developed a xenon-filled gas scintillation detector (GSD) that can monitor delivered dose and 2D beam centroid position pulse-by-pulse in real time, with high response linearity up to high instantaneous dose rates. We present design considerations for the GSD and results of beam tests carried out at operating proton therapy clinics. In addition to demonstrating spatial resolution with σ of a few hundred microns in each transverse dimension and relative dose precision better than 1% over large treatment areas, the test beam results also reveal the dependence of the GSD dose normalization on dose rate, beam energy, and gas impurities.

View Article and Find Full Text PDF

We have analyzed data of the DISTO experiment on the exclusive pp --> pLambdaK+ reaction at 2.85 GeV to search for a strongly bound compact K- pp(approximately = X) state to be formed in the pp --> K+ + X reaction. The observed spectra of the K+ missing mass and the pLambda invariant-mass with high transverse momenta of p and K+ revealed a broad distinct peak of 26-sigma confidence with a mass M(X)=2267+/-3(stat)+/-5(syst) MeV/c2 and a width Gamma(X)=118+/-8(stat)+/-10(syst) MeV.

View Article and Find Full Text PDF

Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at square root of s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions.

View Article and Find Full Text PDF

We report K/pi fluctuations from Au + Au collisions at sqrt[s(NN)]= 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider.

View Article and Find Full Text PDF

In ultraperipheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a rho{0}. The rho{0} production occurs in two well-separated (median impact parameters of 20 and 40 F for the cases considered here) nuclei, so the system forms a two-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing rho{0} production.

View Article and Find Full Text PDF

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons.

View Article and Find Full Text PDF

We measure directed flow (v_{1}) for charged particles in Au+Au and Cu+Cu collisions at sqrt[s_{NN}]=200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p_{t}), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality.

View Article and Find Full Text PDF

We report precision measurements of the Feynman x (xF) dependence, and first measurements of the transverse momentum (pT) dependence, of transverse single-spin asymmetries for the production of pi0 mesons from polarized proton collisions at sqrt[s] = 200 GeV. The xF dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the pT dependence at fixed xF are not consistent with these same perturbative QCD-based calculations.

View Article and Find Full Text PDF

We report a new STAR measurement of the longitudinal double-spin asymmetry A(LL) for inclusive jet production at midrapidity in polarized p + p collisions at a center-of-mass energy of sqrt[s]=200 GeV. The data, which cover jet transverse momenta 5 View Article and Find Full Text PDF

We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (-1< or = eta < or = +2) coverage for jets permits separation of Sivers functions for the valence and sea regions.

View Article and Find Full Text PDF

We present first measurements of the phi-meson elliptic flow (v2(pT)) and high-statistics pT distributions for different centralities from radical sNN=200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2 of the phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Omega to those of the phi as a function of transverse momentum is consistent with a model based on the recombination of thermal s quarks up to pT approximately 4 GeV/c, but disagrees at higher momenta.

View Article and Find Full Text PDF

The STAR collaboration at the BNL Relativistic Heavy-Ion Collider (RHIC) reports measurements of the inclusive yield of nonphotonic electrons, which arise dominantly from semileptonic decays of heavy flavor mesons, over a broad range of transverse momenta (1.2 View Article and Find Full Text PDF

We present the scaling properties of Lambda, Xi, and Omega in midrapidity Au+Au collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider at sqrt[s_{NN}]=200 GeV. The yield of multistrange baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of Lambda, indicating an increase of the strange-quark density of the matter produced. The strange phase-space occupancy factor gamma_{s} approaches unity for the most central collisions.

View Article and Find Full Text PDF

We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.

View Article and Find Full Text PDF

The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal correlations of high transverse momentum (pT) charged hadrons in Au+Au collisions at higher pT than reported previously. As (pT) is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter.

View Article and Find Full Text PDF

Measurements of the production of forward pi0 mesons from p + p and d + Au collisions at square root sNN=200 GeV are reported. The p + p yield generally agrees with next-to-leading order perturbative QCD calculations. The d + Au yield per binary collision is suppressed as eta increases, decreasing to approximately 30% of the p + p yield at eta =4.

View Article and Find Full Text PDF

Transverse momentum spectra of pi+/-, p, and p up to 12 GeV/c at midrapidity in centrality selected Au + Au collisions at square root sNN=200 GeV are presented. In central Au + Au collisions, both pi +/- and p(p) show significant suppression with respect to binary scaling at pT approximately >4 GeV/c. Protons and antiprotons are less suppressed than pi+/-, in the range 1.

View Article and Find Full Text PDF

We report the measurements of Sigma(1385) and Lambda(1520) production in p+p and Au+Au collisions at sqrt[s{NN}]=200 GeV from the STAR Collaboration. The yields and the p(T) spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central Au+Au collisions.

View Article and Find Full Text PDF

Charged hadrons in [EQUATION: SEE TEXT] associated with particles of [EQUATION: SEE TEXT] are reconstructed in pp and Au+Au collisions at sqrt[sNN]=200 GeV. The associated multiplicity and p magnitude sum are found to increase from pp to central Au+Au collisions. The associated p distributions, while similar in shape on the nearside, are significantly softened on the awayside in central Au+Au relative to pp and not much harder than that of inclusive hadrons.

View Article and Find Full Text PDF

We report on the first measurement of elliptic flow v2(pT) of multistrange baryons Xi- +Xi+ and Omega- + Omega+ in heavy-ion collisions. In minimum-bias Au+Au collisions at square root of s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The pT dependence of v2 of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons.

View Article and Find Full Text PDF

We present the first measurement of pseudorapidity distribution of photons in the region 2.3 < or = eta < or = 3.7 for different centralities in Au+Au collisions at square root of (S(NN)) = 62.

View Article and Find Full Text PDF

We describe a double-scattering experiment with a novel tagged neutron beam to measure differential cross sections for np backscattering to better than +/-2% absolute precision. The measurement focuses on angles and energies where the cross section magnitude and angle dependence constrain the charged pion-nucleon coupling constant, but existing data show serious discrepancies among themselves and with energy-dependent partial-wave analyses. The present results are in good accord with the partial-wave analyses, but deviate systematically from other recent measurements.

View Article and Find Full Text PDF

Midrapidity open charm spectra from direct reconstruction of D0(D0)-->K-/+pi+/- in d+Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at squareroot[sNN]=200 GeV are reported. The D0(D0) spectrum covers a transverse momentum (pT) range of 0.1 View Article and Find Full Text PDF