Publications by authors named "SE Nagler"

In the presence of an external magnetic field, the Kitaev model could host either gapped topological anyons or gapless Majorana fermions. In α-RuCl_{3}, the gapped and gapless cases are only separated by a 30° rotation of the in-plane magnetic field vector. The presence or absence of the spectral gap is key for understanding the thermal transport behavior in α-RuCl_{3}.

View Article and Find Full Text PDF

The spin-orbit-assisted Mott insulator α-RuCl is proximate to the coveted quantum spin liquid (QSL) predicted by the Kitaev model. In the search for the pure Kitaev QSL, reducing the dimensionality of this frustrated magnet by exfoliation has been proposed as a way to enhance magnetic fluctuations and Kitaev interactions. Here, we perform angle-dependent tunneling magnetoresistance (TMR) measurements on ultrathin α-RuCl crystals with various layer numbers to probe their magnetic, electronic, and crystal structures.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of work-function-mediated charge transfer for controlling the electrostatics of individual atomic layers, using α-RuCl as a 2D electron acceptor next to hexagonal boron nitride (BN).
  • It highlights how this arrangement induces unique nano-optical behavior in BN by causing interlayer charge polarization, resulting in a reduction of phonon polariton (PhP) propagation length significantly beyond intrinsic losses.
  • The findings are backed by advanced techniques like scattering-type scanning near-field optical microscopy and first-principles calculations, demonstrating the promising applications of charge-transfer heterostructures in enhancing the optoelectronic properties of 2D insulators.
View Article and Find Full Text PDF

The honeycomb magnet α-RuCl has attracted considerable interest because it is proximate to the Kitaev Hamiltonian whose excitations are Majoranas and vortices. The thermal Hall conductivity κ of Majorana fermions is predicted to be half-quantized. Half-quantization of κ/T (T, temperature) was recently reported, but this observation has proven difficult to reproduce.

View Article and Find Full Text PDF

Traditional spectroscopy, by its very nature, characterizes physical system properties in the momentum and frequency domains. However, the most interesting and potentially practically useful quantum many-body effects emerge from local, short-time correlations. Here, using inelastic neutron scattering and methods of integrability, we experimentally observe and theoretically describe a local, coherent, long-lived, quasiperiodically oscillating magnetic state emerging out of the distillation of propagating excitations following a local quantum quench in a Heisenberg antiferromagnetic chain.

View Article and Find Full Text PDF

We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering, showing that Gd is a Dirac magnon material with nodal lines at K and nodal planes at half integer ℓ. We find an anisotropic intensity winding around the K-point Dirac magnon cone, which is interpreted to indicate Berry phase physics. Using linear spin wave theory calculations, we show the nodal lines have nontrivial Berry phases, and topological surface modes.

View Article and Find Full Text PDF

The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions.

View Article and Find Full Text PDF

Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl, we are able to visualize and quantify massive charge transfer at graphene/α-RuCl interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures.

View Article and Find Full Text PDF

We present comprehensive electron spin resonance (ESR) studies of in-plane oriented single crystals of α-RuCl_{3}, a quasi-two-dimensional material with honeycomb structure, focusing on its high-field spin dynamics. The measurements were performed in magnetic fields up to 16 T, applied along the [110] and [100] directions. Several ESR modes were detected.

View Article and Find Full Text PDF

The early 1990s saw the first useful application of pulsed neutron spectroscopy to the study of excitations in low dimensional magnetic systems, with Roger Cowley as a key participant in important early experiments. Since that time the technique has blossomed as a powerful tool utilizing vastly improved neutron instrumentation coupled with more powerful pulsed sources. Here we review representative experiments illustrating some of the fascinating physics that has been revealed in quasi-one and two dimensional systems.

View Article and Find Full Text PDF

TOF-ND elastic scattering of thermal neutrons offers some important advantages over X-ray diffraction (XRD), X-ray fluorescence (XRF), and metallography for the study of archaeological and numismatic problems. Traditional analytical methods are usually destructive and often probe only the surface. Neutrons deeply penetrate samples, simultaneously giving nondestructive bulk information about the crystal structure, composition, and texture (alignment of crystallites) from which thermomechanical manufacturing processes (e.

View Article and Find Full Text PDF

The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. Here we unveil the highly unusual low-temperature heat conductivity κ of α-RuCl_{3}, a prime candidate for realizing such physics: beyond a magnetic field of B_{c}≈7.5  T, κ increases by about one order of magnitude, both for in-plane as well as out-of-plane transport.

View Article and Find Full Text PDF

We report measurements of optical absorption in the zigzag antiferromagnet α-RuCl_{3} as a function of temperature T, magnetic field B, and photon energy ℏω in the range ∼0.3-8.3 meV, using time-domain terahertz spectroscopy.

View Article and Find Full Text PDF

The insulating honeycomb magnet α-RuCl_{3} exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir^{3+} substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru_{1-x}Ir_{x}Cl_{3} show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x>0.

View Article and Find Full Text PDF

Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids (Dirac 1931 Proc. R. Soc.

View Article and Find Full Text PDF

The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl to reconstruct dynamical correlations in energy-momentum space.

View Article and Find Full Text PDF

A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale.

View Article and Find Full Text PDF

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments.

View Article and Find Full Text PDF

Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion.

View Article and Find Full Text PDF

The space-and time-dependent response of many-body quantum systems is the most informative aspect of their emergent behavior. The dynamical structure factor, experimentally measurable using neutron scattering, can map this response in wave vector and energy with great detail, allowing theories to be quantitatively tested to high accuracy. Here, we present a comparison between neutron scattering measurements on the one-dimensional spin-1/2 Heisenberg antiferromagnet KCuF3, and recent state-of-the-art theoretical methods based on integrability and density matrix renormalization group simulations.

View Article and Find Full Text PDF

Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O.

View Article and Find Full Text PDF

We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e.

View Article and Find Full Text PDF

The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons.

View Article and Find Full Text PDF

We present inelastic neutron scattering measurements and first principles calculations examining the intermetallic marcasite CrSb(2). The observed spin-wave dispersion implies that the magnetic interactions are strongly one-dimensional with antiferromagnetic chains parallel to the crystalline c axis. Such low-dimensional excitations are unexpected in a semiconducting intermetallic system.

View Article and Find Full Text PDF

We present a detailed study of magnetism in LuFe(2)O(4), combining magnetization measurements with neutron and soft x-ray diffraction. The magnetic phase diagram in the vicinity of T(N) involves a metamagnetic transition separating an antiferro- and a ferrimagnetic phase. For both phases the spin structure is refined by neutron diffraction.

View Article and Find Full Text PDF