Publications by authors named "SCHOLES G"

Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation.

View Article and Find Full Text PDF

In this article we study the ultrafast dynamics of excitons and charge carriers photogenerated in two-dimensional in-plane heterostructures, namely, CdSe-CdTe nanoplatelets. We combine transient absorption and two-dimensional electronic spectroscopy to study charge transfer and delocalization from a few tens of femtoseconds to several nanoseconds. In contrast with spherical nanocrystals, the relative alignment of the electron and hole states of CdSe and CdTe in thin 2D nanoplatelets does not lead to a type-II heterostructure.

View Article and Find Full Text PDF

The fold of a protein is encoded by its amino acid sequence, but how complex multimeric proteins fold and assemble into functional quaternary structures remains unclear. Here we show that two structurally different phycobiliproteins refold and reassemble in a cooperative manner from their unfolded polypeptide subunits, without biological chaperones. Refolding was confirmed by ultrafast broadband transient absorption and two-dimensional electronic spectroscopy to probe internal chromophores as a marker of quaternary structure.

View Article and Find Full Text PDF

The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells.

View Article and Find Full Text PDF

The multiplication of excitons in organic semiconductors via singlet fission offers the potential for photovoltaic cells that exceed the Shockley-Quiesser limit for single-junction devices. To fully utilize the potential of singlet fission sensitizers in devices, it is necessary to understand and control the diffusion of the resultant triplet excitons. In this work, a new processing method is reported to systematically tune the intermolecular order and crystalline structure in films of a model singlet fission chromophore, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn), without the need for chemical modifications.

View Article and Find Full Text PDF

In this work, we demonstrate the use of broad-band pump-probe spectroscopy to measure femtosecond solvation dynamics. We report studies of a rhodamine dye in methanol and cryptophyte algae light-harvesting proteins in aqueous suspension. Broad-band impulsive excitation generates a vibrational wavepacket that oscillates on the excited-state potential energy surface, destructively interfering with itself at the minimum of the surface.

View Article and Find Full Text PDF

Conjugated polymers are complex multichromophore systems, with emission properties strongly dependent on the electronic energy transfer through active subunits. Although the packing of the conjugated chains in the solid state is known to be a key factor to tailor the electronic energy transfer and the resulting optical properties, most of the current solution-based processing methods do not allow for effectively controlling the molecular order, thus making the full unveiling of energy transfer mechanisms very complex. Here we report on conjugated polymer fibers with tailored internal molecular order, leading to a significant enhancement of the emission quantum yield.

View Article and Find Full Text PDF

When exciting a complex molecular system with a short optical pulse, all chromophores present in the system can be excited. The resulting superposition of electronically and vibrationally excited states evolves in time, which is monitored with transient absorption spectroscopy. We present a methodology to resolve simultaneously the contributions of the different electronically and vibrationally excited states from the complete data.

View Article and Find Full Text PDF

Broadband optical pump and compressed white light continuum probe were used to measure the transient excited-state absorption, ground-state bleach, and stimulated emission signals of cresyl violet solution in methanol. Amplitude oscillations caused by wavepacket motion in the ground and excited electronic states were analyzed. It was found that vibrational coherences in the excited state persist for more than the experimental waiting time window of 6 ps, and the strongest mode had a dephasing time constant of 2.

View Article and Find Full Text PDF

The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET).

View Article and Find Full Text PDF

Singlet fission is an excitation multiplication process in molecular systems that can circumvent energy losses and significantly boost solar cell efficiencies; however, the nature of a critical intermediate that enables singlet fission and details of its evolution into multiple product excitations remain obscure. We resolve the initial sequence of events comprising the fission of a singlet exciton in solids of pentacene derivatives using femtosecond transient absorption spectroscopy. We propose a three-step model of singlet fission that includes two triplet-pair intermediates and show how transient spectroscopy can distinguish initially interacting triplet pairs from those that are spatially separated and noninteracting.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a new theoretical approach to ultrafast transient-absorption spectroscopy, focusing on how individual molecules respond to rapid light pulses.
  • It uses quantum mechanics to describe the transient-absorption signal as overlaps between nuclear wave packets, considering different optical transitions and energy surfaces.
  • An application to light-harvesting chromophores reveals specific features in the absorption signals, including changes in emission frequency and vibrational patterns, while accurately accounting for pulse interactions.
View Article and Find Full Text PDF

Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer.

View Article and Find Full Text PDF

Possibilities offered by 2D visible spectroscopy for the investigation of the properties of excitons in colloidal semiconductor nanocrystals are overviewed, with a particular focus on their ultrafast dynamics. The technique of 2D electronic spectroscopy is illustrated with several examples showing its advantages compared to 1D ultrafast spectroscopic techniques (transient absorption and time-resolved photoluminescence).

View Article and Find Full Text PDF

The photochemistry and aggregation properties of methylene blue (MB) lead to its popular use in photodynamic therapy. The facile formation of strongly coupled "face-to-face" H-aggregates in concentrated aqueous solution, however, significantly changes its spectroscopic properties and photophysics. The photoinitiated dynamics of the simplest MB aggregate, MB2, was investigated over femtosecond to nanosecond time scales revealing sequential internal conversion events that fully relax the excited population.

View Article and Find Full Text PDF

Colloidally stable suspensions of lead halide perovskite nanocrystals are prepared from high-quality lead halide nanocrystal seeds. Perovskite nanocrystals with different layered crystal structures are reported. These systems are well suited for investigations of the intrinsic photophysics and spectroscopy of organic-inorganic metal halide perovskites.

View Article and Find Full Text PDF

Singlet fission to form a pair of triplet excitations on two neighboring molecules and the reverse process, triplet-triplet annihilation to upconvert excitation, have been extensively studied. Comparatively little work has sought to examine the properties of the intermediate state in both of these processes-the bimolecular pair state. Here, the eigenstates constituting the manifold of 16 bimolecular pair excitations and their relative energies in the weak-coupling regime are reported.

View Article and Find Full Text PDF