Publications by authors named "SCHILLING K"

The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.

View Article and Find Full Text PDF

Free-water elimination (FWE) modeling in diffusion magnetic resonance imaging (dMRI) is crucial for accurate estimation of diffusion properties by mitigating the partial volume effects caused by free water, particularly at the interface between white matter and cerebrospinal fluid. The presence of free water partial volume effects leads to biases in estimating diffusion properties. Additionally, the existing mathematical FWE model is a two-compartment model, which can be well posed for multi-shell data.

View Article and Find Full Text PDF

While typical qualitative T1-weighted magnetic resonance images reflect scanner and protocol differences, quantitative T1 mapping aims to measure T1 independent of these effects. Changes in T1 in the brain reflect structural changes in brain tissue. Magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) is an acquisition protocol that allows for efficient T1 mapping with a much lower scan time per slab compared to multi-TI inversion recovery (IR) protocols.

View Article and Find Full Text PDF

Introduction: The effects of sex and apolipoprotein E (APOE)-Alzheimer's disease (AD) risk factors-on white matter microstructure are not well characterized.

Methods: Diffusion magnetic resonance imaging data from nine well-established longitudinal cohorts of aging were free water (FW)-corrected and harmonized. This dataset included 4741 participants (age = 73.

View Article and Find Full Text PDF

Importance: Metals are established neurotoxicants, but evidence of their association with cognitive performance at low chronic exposure levels is limited.

Objective: To investigate the association of urinary metal levels, individually and as a mixture, with cognitive tests and dementia diagnosis, including effect modification by apolipoprotein ε4 allele (APOE4).

Design, Setting, And Participants: The multicenter prospective cohort Multi-Ethnic Study of Atherosclerosis (MESA) was started from July 2000 to August 2002, with follow-up through 2018.

View Article and Find Full Text PDF

Autism spectrum disorders (ASD) have a complex pathogenesis thought to include both genetic and extrinsic factors. Among the latter, inflammation of the developing brain has recently gained growing attention. However, how genetic predisposition and inflammation might converge to precipitate autistic behavior remains elusive.

View Article and Find Full Text PDF

White matter alterations are increasingly implicated in neurological diseases and their progression. International-scale studies use diffusion-weighted magnetic resonance imaging (DW-MRI) to qualitatively identify changes in white matter microstructure and connectivity. Yet, quantitative analysis of DW-MRI data is hindered by inconsistencies stemming from varying acquisition protocols.

View Article and Find Full Text PDF

Introduction: Coaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors.

View Article and Find Full Text PDF

Diffusion MRI derived free-water (FW) metrics show promise in predicting cognitive impairment and decline in aging and Alzheimer's disease (AD). FW is sensitive to subtle changes in brain microstructure, so it is possible these measures may be more sensitive than traditional structural neuroimaging biomarkers. In this study, we examined the associations among FW metrics (measured in the hippocampus and two AD signature meta-ROIs) with cognitive performance, and compared FW findings to those from more traditional neuroimaging biomarkers of AD.

View Article and Find Full Text PDF

Riverine sampling of pollutants is commonly used to understand pollutants' transport pathways, relationships with hydrology, and overall presence in a waterbody. However, temporal gaps between sample collection introduce errors to these efforts, and guidance prescribing sampling frequency remains sparse. The magnitude of error often depends on a contaminant's transport mechanisms and local hydrologic conditions, making the creation of comprehensive sampling guidance difficult.

View Article and Find Full Text PDF

Background: The magnitudes and patterns of alterations of the white-gray matter (WM-GM) functional connectome in preclinical Alzheimer's disease (AD), and their associations with amyloid and cognition, remain unclear.

Methods: We compared regional WM-GM functional connectivity (FC) and network properties in subjects with preclinical AD (or AD dementia) and controls (total n = 344). Their associations with positron emission tomography AV45-measured amyloid beta (Aβ) load and modified Preclinical Alzheimer Cognitive Composite (mPACC) scores were examined.

View Article and Find Full Text PDF

Current models of brain networks may potentially be improved by integrating our knowledge of structural connections, within and between circuits, with metrics of functional interactions between network nodes. The former may be obtained from diffusion MRI of white matter (WM), while the latter may be derived by measuring correlations between resting state BOLD signals from pairs of gray matter (GM) regions. From inspection of diffusion MRI data, it is clear that each WM voxel within a 3D image array may be traversed by multiple WM structural tracts, each of which connects a pair of GM nodes.

View Article and Find Full Text PDF

Societal risks from flooding are evident at a range of spatial scales and climate change will exacerbate these risks in the future. Assessing flood risks across broad geographical regions is a challenge, and often done using streamflow time-series records or hydrologic models. In this study, we used a national-scale hydrological model to identify, assess, and map 16 different streamflow metrics that could be used to describe flood risks across 34,987 HUC12 subwatersheds within the Mississippi-Atchafalaya River Basin (MARB).

View Article and Find Full Text PDF

Connectivity matrices derived from diffusion MRI (dMRI) provide an interpretable and generalizable way of understanding the human brain connectome. However, dMRI suffers from inter-site and between-scanner variation, which impedes analysis across datasets to improve robustness and reproducibility of results. To evaluate different harmonization approaches on connectivity matrices, we compared graph measures derived from these matrices before and after applying three harmonization techniques: mean shift, ComBat, and CycleGAN.

View Article and Find Full Text PDF

Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated the link between urinary metal levels (both nonessential and essential) and the progression of coronary artery calcium (CAC), a marker for cardiovascular disease, in participants from the Multi-Ethnic Study of Atherosclerosis (MESA).
  • Results showed that higher levels of metals like cadmium, tungsten, uranium, and cobalt were associated with significantly increased CAC levels over 10 years, indicating a potential risk factor for cardiovascular disease.
  • The findings suggest that exposure to certain metals has a comparable impact on coronary calcification as traditional cardiovascular risk factors, emphasizing the need for further research into environmental influences on heart health.
View Article and Find Full Text PDF

Phosphorus (P) is a widespread waterborne pollutant that impairs many waterbodies. However, it is challenging to measure directly, and much research has been dedicated to developing surrogacy models that can repeatedly predict its concentration. Optimal approaches for modeling strategies are often unclear and depend upon local P dynamics and the availability of financial and technical resources.

View Article and Find Full Text PDF

Diffusion magnetic resonance imaging (dMRI) offers the ability to assess subvoxel brain microstructure through the extraction of biomarkers like fractional anisotropy, as well as to unveil brain connectivity by reconstructing white matter fiber trajectories. However, accurate analysis becomes challenging at the interface between cerebrospinal fluid and white matter, where the MRI signal originates from both the cerebrospinal fluid and the white matter partial volume. The presence of free water partial volume effects introduces a substantial bias in estimating diffusion properties, thereby limiting the clinical utility of DWI.

View Article and Find Full Text PDF

An understanding of human brain individuality requires the integration of data on brain organization across people and brain regions, molecular and systems scales, as well as healthy and clinical states. Here, we help advance this understanding by leveraging methods from computational genomics to integrate large-scale genomic, transcriptomic, neuroimaging, and electronic-health record data sets. We estimated genetically regulated gene expression (gr-expression) of 18,647 genes, across 10 cortical and subcortical regions of 45,549 people from the UK Biobank.

View Article and Find Full Text PDF

Myeloproliferative neoplasms can cause primary Budd-Chiari-Syndrome with acute or chronic liver failure necessitating liver transplantation. However, preventing the recurrence remains challenging and the need for post-transplant anticoagulant and cytoreductive treatment is not sufficiently clear. We analyzed the treatment regimens for all patients who presented to our department with PBCS from MPN between 2004 and 2021.

View Article and Find Full Text PDF
Article Synopsis
  • Resting state correlations in BOLD MRI signals from white matter are anisotropic, allowing the use of functional correlation tensors (FCTs) to analyze microstructural changes in these brain areas.
  • This study analyzed FCT characteristics in a large sample of 461 cognitively normal individuals aged 42 to 95, aiming to uncover patterns related to aging and sex differences.
  • Results showed variable changes in FCT metrics with age, with some areas showing decreased correlations and others increased—indicating complex regional aging effects, especially with more significant changes observed in females.
View Article and Find Full Text PDF

White matter signals in resting state blood oxygen level dependent functional magnetic resonance (BOLD-fMRI) have been largely discounted, yet there is growing evidence that these signals are indicative of brain activity. Understanding how these white matter signals capture function can provide insight into brain physiology. Moreover, functional signals could potentially be used as early markers for neurological changes, such as in Alzheimer's Disease.

View Article and Find Full Text PDF

Subject head motion during the acquisition of diffusion-weighted imaging (DWI) of the brain induces artifacts and affects image quality. Information about the frequency and extent of motion could reveal which aspects of motion correction are most necessary. Therefore, we investigate the extent of translation and rotation among participants, and how the motion changes during the scan acquisition.

View Article and Find Full Text PDF

Diffusion MRI (dMRI) streamline tractography, the gold-standard for in vivo estimation of white matter (WM) pathways in the brain, has long been considered as a product of WM microstructure. However, recent advances in tractography demonstrated that convolutional recurrent neural networks (CoRNN) trained with a teacher-student framework have the ability to learn to propagate streamlines directly from T1 and anatomical context. Training for this network has previously relied on high resolution dMRI.

View Article and Find Full Text PDF