Publications by authors named "SCHIEBER J"

Introduction: Supraventricular tachycardia (SVT) is a common pediatric arrhythmia. Beta blockers (BBs) and calcium channel blockers (CCBs) are used for treatment despite little data examining their use. We describe the prescriptive tendencies, efficacy, and tolerability of BBs and CCBs used in the treatment of pediatric SVT.

View Article and Find Full Text PDF

The presence of perennially wet surface environments on early Mars is well documented, but little is known about short-term episodicity in the early hydroclimate. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) IgA and IgG antibodies in serum from nasopharyngeal carcinoma (NPC) patients are well-established markers for EBV-positive NPC. Luminex-based multiplex serology can analyze antibodies to multiple antigens simultaneously; however, the detection of both IgA and IgG antibodies requires separate measurements. Here we describe the development and validation of a novel duplex multiplex serology assay, which can analyze IgA and IgG antibodies against several antigens simultaneously.

View Article and Find Full Text PDF

Urobatis jamaicensis is a coastal batoid species affected by habitat loss and small-scale exploitation from fisheries and the aquarium trade, yet the life-history information available is limited. This is the first study to assess the vertebral centra from 195 stingrays to estimate age and growth patterns, and compare them with the biannual reproductive pattern previously reported for this species. Age-at-size data were compared using five different growth models and found a two-parameter von Bertalanffy growth function (VBGF), the Gompertz model and a modified VBGF fit best for males, females and sexes combined, respectively.

View Article and Find Full Text PDF

Between January 2019 and January 2021, the Mars Science Laboratory team explored the Glen Torridon (GT) region in Gale crater (Mars), known for its orbital detection of clay minerals. Mastcam, Mars Hand Lens Imager, and ChemCam data are used in an integrated sedimentological and geochemical study to characterize the Jura member of the upper Murray formation and the Knockfarril Hill member of the overlying Carolyn Shoemaker formation in northern GT. The studied strata show a progressive transition represented by interfingering beds of fine-grained, recessive mudstones of the Jura member and coarser-grained, cross-stratified sandstones attributed to the Knockfarril Hill member.

View Article and Find Full Text PDF

Background: Proactive cooling with a novel cooling device has been shown to reduce endoscopically identified thermal injury during radiofrequency (RF) ablation for the treatment of atrial fibrillation using medium power settings. We aimed to evaluate the effects of proactive cooling during high-power short-duration (HPSD) ablation.

Methods: A computer model accounting for the left atrium (1.

View Article and Find Full Text PDF

Introduction: Patients with sickle cell disease (SCD) have repeated episodes of red blood cell (RBC) sickling and microvascular occlusion that manifest as pain crises, acute chest syndrome, and chronic hemolysis. These clinical sequelae usually increase during pregnancy. Given the racial distribution of SCD, patients with SCD are also more likely to have rarer RBC antigen genotypes than RBC donor populations.

View Article and Find Full Text PDF

Collagen is heavily hydroxylated. Experiments show that proline hydroxylation is important to triple helix (monomer) stability, fibril assembly, and interaction of fibrils with other molecules. Nevertheless, experiments also show that even without hydroxylation, type I collagen does assemble into its native D-banded fibrillar structure.

View Article and Find Full Text PDF

We evaluate the thermodynamic consistency of the anisotropic mobile slip-link model for entangled flexible polymers. The level of description is that of a single chain, whose interactions with other chains are coarse grained to discrete entanglements. The dynamics of the model consist of the motion of entanglements through space and of the chain through the entanglements, as well as the creation and destruction of entanglements, which are implemented in a mean-field way.

View Article and Find Full Text PDF

A simple mean-field microswimmer model is presented. The model is inspired by the nonequilibrium thermodynamics of multi-component fluids that undergo chemical reactions. These thermodynamics can be rigorously described in the context of the GENERIC (general equation for the nonequilibrium reversible-irreversible coupling) framework.

View Article and Find Full Text PDF

We investigate the ability of a coarse-grained slip-link model and a simple double reptation model to describe the linear rheology of polydisperse linear polymer melts. Our slip-link model is a well-defined mathematical object that can describe the equilibrium dynamics and non-linear rheology of flexible polymer melts with arbitrary polydispersity and architecture with a minimum of inputs: the molecular weight of a Kuhn step, the entanglement activity, and Kuhn step friction. However, this detailed model is computationally expensive, so we also examine predictions of the cheaper double reptation model, which is restricted to only linear rheology near the terminal zone.

View Article and Find Full Text PDF

The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length.

View Article and Find Full Text PDF

Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations.

View Article and Find Full Text PDF

Coarse grained simulation approaches provide powerful tools for the prediction of the equilibrium properties of polymeric systems. Recent efforts have sought to develop coarse-graining strategies capable of predicting the non-equilibrium behavior of entangled polymeric materials. Slip-link and slip-spring models, in particular, have been shown to be capable of reproducing several key aspects of the linear response and rheology of polymer melts.

View Article and Find Full Text PDF

Type I collagen is the predominant collagen in mature tendons and ligaments, where it gives them their load-bearing mechanical properties. Fibrils of type I collagen are formed by the packing of polypeptide triple helices. Higher-order structures like fibril bundles and fibers are assembled from fibrils in the presence of other collagenous molecules and noncollagenous molecules.

View Article and Find Full Text PDF

Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique.

View Article and Find Full Text PDF

Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis.

View Article and Find Full Text PDF

A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements.

View Article and Find Full Text PDF

Unlabelled: Pelvic organ prolapse (POP) is characterized by weakening of the connective tissues and loss of support for the pelvic organs. Collagen is the predominant, load-bearing protein within pelvic floor connective tissues. In this study, we examined the nanoscopic structures and biomechanics of native collagen fibrils in surgical, vaginal wall connective tissues from healthy women and POP patients.

View Article and Find Full Text PDF

The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters.

View Article and Find Full Text PDF

A signature feature of collagen is its axial periodicity visible in TEM as alternating dark and light bands. In mature, type I collagen, this repeating unit, D, is 67 nm long. This periodicity reflects an underlying packing of constituent triple-helix polypeptide monomers wherein the dark bands represent gaps between axially adjacent monomers.

View Article and Find Full Text PDF

After relaxing some assumptions we apply a single-chain mean-field mathematical model recently introduced [RSC Adv. (2014)] to describe the role of molecular motors in the mechanical properties of active gels. The model allows physics that are not available in models postulated on coarser levels of description.

View Article and Find Full Text PDF

In rice, Si assimilated from the soil solution is deposited in inter- and intracellular spaces throughout the leaf and stems to form silicified structures (so-called phytoliths). Because K is also present in significant concentrations in rice stems and leaves, the question arises if K is immobilized in the mineralized silica during the precipitation of Si. This work determined whether desilification of the phytolith is a factor regulating K release by implementing batch experiments.

View Article and Find Full Text PDF

The idea that the dynamics of concentrated, high-molecular weight polymers are largely governed by entanglements is now widely accepted and typically understood through the tube model. Here we review alternative approaches, slip-link models, that share some similarities to and offer some advantages over tube models. Although slip links were proposed at the same time as tubes, only recently have detailed, quantitative mathematical models arisen based on this picture.

View Article and Find Full Text PDF