Publications by authors named "SAVITSKAYA E"

Pseudomonas putida KT2440 is a metabolically versatile bacterium with considerable promise as a chassis strain for production and degradation of complex organic compounds. Unlike most bacteria, P. putida KT2440 encodes the Ku and LigD proteins involved in Non-Homologous End Joining (NHEJ).

View Article and Find Full Text PDF

The choice of guide RNA (gRNA) for CRISPR-based gene targeting is an essential step in gene editing applications, but the prediction of gRNA specificity remains challenging. Lack of transparency and focus on point estimates of efficiency disregarding the information on possible error sources in the model limit the power of existing Deep Learning-based methods. To overcome these problems, we present a new approach, a hybrid of Capsule Networks and Gaussian Processes.

View Article and Find Full Text PDF

CRISPR arrays are prokaryotic genomic loci consisting of repeat sequences alternating with unique spacers acquired from foreign nucleic acids. As one of the fastest-evolving parts of the genome, CRISPR arrays can be used to differentiate closely related prokaryotic lineages and track individual strains in prokaryotic communities. However, the assembly of full-length CRISPR arrays sequences remains a problem.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists learned about a special process called priming in Type I CRISPR systems that helps them grab new pieces of DNA really well.
  • This process involves a group of proteins called Cascade-crRNA, which helps find the DNA and signals another protein, Cas3, to get involved.
  • They did experiments using specific antibodies to see if the Cas1 and Cas3 proteins work together, and they found out they are connected when the system is adapting to new DNA.
View Article and Find Full Text PDF

CRISPR arrays contain spacers, some of which are homologous to genome segments of viruses and other parasitic genetic elements and are employed as portion of guide RNAs to recognize and specifically inactivate the target genomes. However, the fraction of the spacers in sequenced CRISPR arrays that reliably match protospacer sequences in genomic databases is small, leaving the question of the origin(s) open for the great majority of the spacers. Here, we extend the spacer analysis by examining the distribution of partial matches (matching k-mers) between spacers and genomes of viruses infecting the given host as well as the host genomes themselves.

View Article and Find Full Text PDF

Bacteria and archaea use CRISPR-Cas adaptive immunity systems to interfere with viruses, plasmids, and other mobile genetic elements. During the process of adaptation, CRISPR-Cas systems acquire immunity by incorporating short fragments of invaders' genomes into CRISPR arrays. The acquisition of fragments of host genomes leads to autoimmunity and may drive chromosomal rearrangements, negative cell selection, and influence bacterial evolution.

View Article and Find Full Text PDF

Type I CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA fragments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted degradation of DNA containing a protospacer. Interference-driven DNA degradation can be coupled with primed adaptation, in which spacers are acquired from DNA surrounding the targeted protospacer.

View Article and Find Full Text PDF

CRISPR interference occurs when a protospacer recognized by the CRISPR RNA is destroyed by Cas effectors. In Type I CRISPR-Cas systems, protospacer recognition can lead to «primed adaptation» - acquisition of new spacers from in cis located sequences. Type I CRISPR-Cas systems require the presence of a trinucleotide protospacer adjacent motif (PAM) for efficient interference.

View Article and Find Full Text PDF

CRISPR DNA arrays of unique spacers separated by identical repeats ensure prokaryotic immunity through specific targeting of foreign nucleic acids complementary to spacers. New spacers are acquired into a CRISPR array in a process of CRISPR adaptation. Selection of foreign DNA fragments to be integrated into CRISPR arrays relies on PAM (protospacer adjacent motif) recognition, as only those spacers will be functional against invaders.

View Article and Find Full Text PDF

Prokaryotic adaptive immunity is established against mobile genetic elements (MGEs) by 'naïve adaptation' when DNA fragments from a newly encountered MGE are integrated into CRISPR-Cas systems. In Escherichia coli, DNA integration catalyzed by Cas1-Cas2 integrase is well understood in mechanistic and structural detail but much less is known about events prior to integration that generate DNA for capture by Cas1-Cas2. Naïve adaptation in E.

View Article and Find Full Text PDF

During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1.

View Article and Find Full Text PDF

CRISPR-Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR-Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR-Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage.

View Article and Find Full Text PDF

CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders.

View Article and Find Full Text PDF

The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits.

View Article and Find Full Text PDF

CRISPR-Cas systems of adaptive immunity in prokaryotes consist of CRISPR arrays (clusters of short repeated genomic DNA fragments separated by unique spacer sequences) and cas (CRISPR-associated) genes that provide cells with resistance against bacteriophages and plasmids containing protospacers, i.e. sequences complementary to CRISPR array spacers.

View Article and Find Full Text PDF

Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated (Cas) immunity relies on adaptive acquisition of spacers-short fragments of foreign DNA. For the type I-E CRISPR-Cas system from Escherichia coli, efficient "primed" adaptation requires Cas effector proteins and a CRISPR RNA (crRNA) whose spacer partially matches a segment (protospacer) in target DNA. Primed adaptation leads to selective acquisition of additional spacers from DNA molecules recognized by the effector-crRNA complex.

View Article and Find Full Text PDF

CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR-Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response.

View Article and Find Full Text PDF

CRISPR-Cas are small RNA-based adaptive prokaryotic immunity systems protecting cells from foreign DNA or RNA. Type I CRISPR-Cas systems are composed of a multiprotein complex (Cascade) that, when bound to CRISPR RNA (crRNA), can recognize double-stranded DNA targets and recruit the Cas3 nuclease to destroy target-containing DNA. In the Escherichia coli type I-E CRISPR-Cas system, crRNAs are generated upon transcription of CRISPR arrays consisting of multiple palindromic repeats and intervening spacers through the function of Cas6e endoribonuclease, which cleaves at specific positions of repeat sequences of the CRISPR array transcript.

View Article and Find Full Text PDF

In Escherichia coli, acquisition of new spacers in the course of CRISPR-Cas adaptation is dramatically stimulated by preexisting partial matches between a bacterial CRISPR cassette spacer and a protospacer sequence in the DNA of the infecting bacteriophage or plasmid. This phenomenon, which we refer to as "priming," can be used for very simple and rapid construction of multiple E. coli strains capable of targeting, through CRISPR interference, any phage or plasmid of interest.

View Article and Find Full Text PDF

Multiple studies characterizing the human ageing phenotype have been conducted for decades. However, there is no centralized resource in which data on multiple age-related changes are collated. Currently, researchers must consult several sources, including primary publications, in order to obtain age-related data at various levels.

View Article and Find Full Text PDF

During the process of prokaryotic CRISPR adaptation, a copy of a segment of foreign deoxyribonucleic acid referred to as protospacer is added to the CRISPR cassette and becomes a spacer. When a protospacer contains a neighboring target interference motif, the specific small CRISPR ribonucleic acid (crRNA) transcribed from expanded CRISPR cassette can protect a prokaryotic cell from virus infection or plasmid transformation and conjugation. We show that in Escherichia coli, a vast majority of plasmid protospacers generate spacers integrated in CRISPR cassette in two opposing orientations, leading to frequent appearance of complementary spacer pairs in a population of cells that underwent CRISPR adaptation.

View Article and Find Full Text PDF

In Escherichia coli, the acquisition of new CRISPR spacers is strongly stimulated by a priming interaction between a spacer in CRISPR RNA and a protospacer in foreign DNA. Priming also leads to a pronounced bias in DNA strand from which new spacers are selected. Here, ca.

View Article and Find Full Text PDF

Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein.

View Article and Find Full Text PDF

The looping model of enhancer-promoter interactions predicts that these specific long-range interactions are supported by a certain class of proteins. In particular, the Drosophila transcription factor Zeste was hypothesized to facilitate long-distance associations between enhancers and promoters. We have re-examined the role of Zeste in supporting long-range interactions between an enhancer and a promoter using the white gene as a model system.

View Article and Find Full Text PDF

Mammalian forms of the transcription repressor, Kaiso, can reportedly bind methylated DNA and non-methylated CTGCNA motifs. Here we compare the DNA-binding properties of Kaiso from frog, fish and chicken and demonstrate that only the methyl-CpG-binding function of Kaiso is evolutionarily conserved. We present several independent experimental lines of evidence that the phenotypic abnormalities associated with xKaiso-depleted Xenopus laevis embryos are independent of the putative CTGCNA-dependent DNA-binding function of xKaiso.

View Article and Find Full Text PDF