Publications by authors named "SA Boyd"

β-Lactams are the most widely used antibiotics for the treatment of bacterial infections because of their proven track record of safety and efficacy. However, susceptibility to β-lactam antibiotics is continually eroded by resistance mechanisms. Emerging multidrug-resistant (MDR) strains possessing altered alleles (encoding PBP2) pose a global health emergency as they threaten the utility of ceftriaxone, the last remaining outpatient antibiotic.

View Article and Find Full Text PDF

Remediation-focused predictive tools for polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) rely on transformation models to evaluate the reduction in total contaminant load and toxic equivalency (TEQ). In this study, a comprehensive model predicting the profiles of PCDD/F congeners and the associated TEQs was developed. The model employs first-order kinetics to describe the transformation of 256 reactions for 75 PCDD congeners and 421 reactions for 135 PCDF congeners.

View Article and Find Full Text PDF

Smectite clay-templated nanoscale zero-valent iron (CZVI) was modified with tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) to achieve organoclay-templated ZVI (OCZVI). The reactivity of various OCZVIs was evaluated on the basis of degradation of decabromodiphenyl ether (DBDE) in tetrahydrofuran (THF)-water binary solution. Characterization of OCZVI interlayer at nanometric scale indicated that the clay particles had the domains with three basal spacings in the THF/water solution.

View Article and Find Full Text PDF

Understanding how bacterial community assembly and antibiotic resistance genes (ARGs) respond to antibiotic exposure is essential to deciphering the ecological risk of anthropogenic antibiotic pollution in soils. In this study, three loam soils with different land management (unmanured golf course, dairy-manured pasture, and swine-manured cornfield) were spiked with a mixture of 11 antibiotics at the initial concentration of 100 and 1000 μg kg for each antibiotic and incubated over 132 days, mimicking a scenario of pulse disturbance and recovery in soils, with unspiked soil samples as the control treatment. The Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model (iCAMP) analysis demonstrated that drift and dispersal limitation contributed to 57%-65% and 16%-25%, and homogeneous selection 12%-16% of soil bacterial community assembly.

View Article and Find Full Text PDF
Article Synopsis
  • Microorganisms can exist as either biofilms or planktonic species, and this study focused on the differences in antibiotic resistance expression between them when exposed to tetracycline.
  • Biofilm E. coli showed up to 1.6 times greater antibiotic resistance compared to their planktonic counterparts, particularly on glass surfaces due to higher selection pressure.
  • The study highlights that the retention of tetracycline by extracellular polymeric substances (EPS) in biofilms contributes to this increased antibiotic resistance, which has implications for understanding antibiotic effectiveness in both natural and engineered environments.
View Article and Find Full Text PDF

Predicting plant uptake of pharmaceuticals from soils is very challenging because many pharmaceuticals are ionizable compounds, which experience highly variable sorption/desorption and transformation processes in soils. This study aimed to elucidate how the equilibrium between sorbed and dissolved phases influences radish uptake of 15 pharmaceuticals from three soils with different properties. After 30 days of uptake, the accumulation of acetaminophen, carbamazepine, lamotrigine, carbadox, trimethoprim, and triclosan in radish ranked as Riddles > Capac > Spinks soil.

View Article and Find Full Text PDF

Objective: The COVID-19 pandemic has disrupted graduate medical education, impacting Accreditation Council for Graduate Medical Education (ACGME)-mandated didactics. We aimed to study the utility of 2 methods of virtual learning: the daily National Surgery Resident Lecture Series (NSRLS), and weekly "SCORE School" educational webinars designed around the Surgical Council on Resident Education (SCORE) curriculum.

Design And Setting: NSRLS: The National Surgery Resident Lecture Series was a daily virtual educational session initially led by faculty at an individual surgical residency program.

View Article and Find Full Text PDF

Polychlorinated dibenzo-p-dioxins and -furans (PCDD/PCDFs) are highly toxic organic pollutants in soils and sediments which persist over timescales that extend from decades to centuries. There is a growing need to develop effective technologies for remediating PCDD/Fs-contaminated soils and sediments to protect human and ecosystem health. The use of sorbent amendments to sequester PCDD/Fs has emerged as one promising technology.

View Article and Find Full Text PDF

The introduction of pharmaceuticals into agricultural lands from the application of biosolids and animal manure, and irrigation with treated wastewater has led to concern for animal and human health after the ingestion of pharmaceutical-tainted agricultural products. In this study, the uptake and accumulation of cephalexin, a commonly prescribed antibiotic, was compared in three common vegetables (lettuce, celery, and radish) grown in nutrient solution for 144 h. During the uptake experiments, cephalexin concentration in the nutrient solution decreased in the order of radish > celery > lettuce, while the accumulation of cephalexin in vegetable roots followed the rank of lettuce > celery > radish.

View Article and Find Full Text PDF

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic and persistent organic pollutant found in soils and sediments. It has been linked to several adverse health outcomes in humans and wildlife, including suppression of the immune system. TCDD is strongly sorbed to soils/sediments due to its extremely low water solubility.

View Article and Find Full Text PDF

The commercial flame retardant is an emerging contaminant (EC) commonly found in soils and sediments. A coupled UV-photolysis-biodegradation process was used to decompose decabromodiphenyl ether (BDE-209) in clay slurries. A novel bioslurry bioreactor (NBB) was employed in which BDE-209 degradation was maximized by the simultaneous application of LED UVA irradiation and biodegradation by a mixed bacterial culture.

View Article and Find Full Text PDF

Crops grown in soils receiving wastewaters, biosolids, or manures can accumulate pharmaceuticals in edible parts, raising concerns over potential human exposure to multiple pharmaceuticals. Nonetheless, viable mitigation options for minimizing plant uptake of pharmaceuticals are limited. This study evaluated how biochar amendment could influence the uptake of 15 pharmaceuticals by radish (Raphanus sativus) grown in a sandy loam at two amendment rates (0.

View Article and Find Full Text PDF

Decabrominated diphenyl ether (BDE-209) is a primary component of the brominated flame retardants used in a variety of industrial and domestic applications. BDE-209 bioaccumulates in aquatic organisms and has been identified as an emerging contaminant that threatens human and ecosystem health. Sequential photolysis-microbial biodegradation processes were utilized here to treat BDE-209 in clay- or soil-water slurries.

View Article and Find Full Text PDF

Polychlorinated dibenzo-p-dioxins and dibenzofurans are a group of chemically-related pollutants categorically known as dioxins. Some of their chlorinated congeners are among the most hazardous pollutants that persist in the environment. This persistence is due in part to the limited number of bacteria capable of metabolizing these compounds, but also to their limited bioavailability in soil.

View Article and Find Full Text PDF

Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high levels of glucose. Flux through GK is also responsible for reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can activate GK could provide a therapeutic benefit.

View Article and Find Full Text PDF

The dissemination of pharmaceuticals in agroecosystems originating from land application of animal manure/sewage sludge and irrigation with treated wastewater in agricultural production has raised concern about the accumulation of pharmaceuticals in food products. The pathways of pharmaceutical entries via plant roots, transport to upper fractions, and the factors influencing these processes have yet been systematically elucidated, thus impeding the development of effective measures to mitigate pharmaceutical contamination in food crops. In this study, lettuce uptake of thirteen commonly used pharmaceuticals was investigated using a hydroponic experimental setting.

View Article and Find Full Text PDF

Sequestration of anthropogenic antibiotics by biochars from waters may be a promising strategy to minimize environmental and human health risks of antibiotic resistance. This study investigated the long-term sequestration of lincomycin by 17 slow-pyrolysis biochars using batch sorption experiments during 365 days. Sorption kinetics were well fitted to the Weber-Morris intraparticle diffusion model for all tested biochars with the intraparticle diffusion rate constant (k) of 25.

View Article and Find Full Text PDF

Land application of animal manure could change the profiles of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial communities in receiving soils. Using high-throughput real-time quantitative PCR and 16S rRNA amplicon sequencing techniques, this study investigated the ARGs and bacterial communities in field soils under various crop (corn and pasture) and manure (swine and dairy) managements, which were compared with those of two non-manured reference soils from adjacent golf course and grassland. In total 89 unique ARG subtypes were found in the soil samples and they conferred resistance via efflux pump, cellular protection and antibiotic deactivation.

View Article and Find Full Text PDF

Pharmaceuticals in agricultural soils originating from irrigation with treated wastewater and land-applied biosolids can enter field crops. However, little is known about the role of pore water in plant uptake of pharmaceuticals from soils. In this study, the fate, uptake and distribution of fifteen commonly used pharmaceuticals in soil-water-radish systems were investigated to examine the relationship between the accumulation and their physicochemical processes in soils.

View Article and Find Full Text PDF
Article Synopsis
  • Pharmaceutical metabolism in plants affects vegetable safety and human health monitoring but is under-researched due to methodological limitations.
  • This study used radish as a model to analyze how different pharmaceuticals (like caffeine and oxytetracycline) are metabolized both in living plants and through isolated enzyme extracts.
  • Results showed significant differences in metabolism between plant parts, indicating the utility of plant enzyme extracts as a research tool for understanding pharmaceutical metabolism.
View Article and Find Full Text PDF

The use of activated carbon (AC) as an in situ sorbent amendment to sequester polychlorinated-dibenzo-p-dioxins and furans (PCDD/Fs) present in contaminated soils and sediments has recently gained attention as a novel remedial approach. This remedy could be implemented at much lower cost while minimizing habitat destruction as compared to traditional remediation technologies that rely on dredging/excavation and landfilling. Several prior studies have demonstrated the ability of AC amendments to reduce pore water concentrations and hence bioaccumulation of PCDD/Fs in invertebrate species.

View Article and Find Full Text PDF

Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E.

View Article and Find Full Text PDF

Pharmaceuticals can be metabolized after being taken up by plants. The metabolites could manifest similar or equivalent bioactivity to the parent compound, promoting the critical need to understand the metabolism in plants. Caffeine has been frequently detected in agriculture produce; however, little attention is given to its metabolites in vegetables.

View Article and Find Full Text PDF

Activated carbon (AC) is an increasingly attractive remediation alternative for the sequestration of dioxins at contaminated sites globally. However, the potential for AC to reduce the bioavailability of dioxins in mammals and the residing gut microbiota has received less attention. This question was partially answered in a recent study examining 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hallmark toxic responses in mice administered with TCDD sequestered by AC or freely available in corn oil by oral gavage.

View Article and Find Full Text PDF

Increasing concentrations of anthropogenic antibiotics in soils are partly responsible for the proliferation of bacterial antibiotic resistance. However, little is known about how soil-sorbed antibiotics exert selective pressure on bacteria in unsaturated soils. This study investigated the bioavailability of tetracycline sorbed on three soils (Webster clay loam, Capac sandy clay loam, and Oshtemo loamy sand) to a fluorescent Escherichia coli bioreporter under unsaturated conditions using agar diffusion assay, microscopic visualization, and model simulation.

View Article and Find Full Text PDF