Amyloid-targeting therapy has recently become widely available in the U.S. for the treatment of patients with symptomatic mild Alzheimer's disease (AD).
View Article and Find Full Text PDFBackground: Growing evidence suggests that environmental pollutants exert a detrimental impact on female fertility. Among these pollutants, volatile organic compounds (VOCs), easily encountered in the environment, have garnered significant attention as prevalent airborne contaminants. Nevertheless, a definitive consensus regarding the association between VOCs and the incidence of infertility remains elusive.
View Article and Find Full Text PDFA novel sensing platform was constructed for the recognition and identification of dihydroxybenzene isomers based on the MOF-0.02TEA fluorescence sensor with the morphology of nanosheet microspheres through coordination modulation. Based on the sensing principle that the amino group on the MOF-0.
View Article and Find Full Text PDFThe highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFOseltamivir is a drug that has been widely used to prevent and treat influenza A and B. In this work, an ultrasensitive, simple, and novel electrochemiluminescence (ECL) sensor combined with molecularly imprinted polymers (MIP-ECL) based on a graphene-like two-dimensional material, Mxene quantum dots (MQDs) was constructed to selectively detect oseltamivir. A molecularly imprinted polymer membrane containing an oseltamivir template was constructed by electropolymerization and elution of modified MQDs on a glassy carbon electrode.
View Article and Find Full Text PDFNitrite is widely used as a food additive, and it is of great significance to realize accurate detection of nitrite for food safety. Electrochemical technique is characterized by simple operation and portability, which enables rapid and accurate detection. The key factors affecting the nitrite detection performance are the electrocatalytic activity and interfacial electron transfer efficiency of the electrode.
View Article and Find Full Text PDFCircularly polarized organic light-emitting diodes (CP-OLEDs) have significant promise for naked-eye 3D displays. However, most devices are fabricated using vacuum deposition technology, and development of efficient solution-processed CP-OLEDs, particularly those exhibiting low efficiency roll-off, remains a formidable challenge. This research successfully designed and synthesized two pairs of thermally activated delayed fluorescence (TADF) enantiomers through isomer engineering, namely (R/S)-N-5-TPA and (R/S)-N-4-TPA, which features fifth and fourth substitution sites of phthalimide (acceptor) by tri-phenylamine (donor), respectively.
View Article and Find Full Text PDFAzuacenes, defined as azulene fused with acenes in a 6-7-5 ring topology and spanning lengths from 3 to 6 rings, have been synthesized using a new skeleton editing and [3 + 2] annulation synthesis protocol as a distinction regarding the procedures to obtain the 6-5-7 isomers. Comprehensive studies on ground-state and excited-state spectroscopy, electrochemical properties, chemical stability, and solid-state structure have been conducted to compare these azuacenes with acenes. For the same number of rings, we found that azuacenes improve the chemical stability of acenes (i.
View Article and Find Full Text PDFHighly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.
View Article and Find Full Text PDFThis study defines biochemical mechanisms that contribute to novel neural-regenerative activities we recently demonstrated for thiol-modified ManNAc analogs in human neural stem cells (hNSCs) by comparing our lead drug candidate for brain repair, "TProp," to a "size-matched" N-alkyl control analog, "But." These analogs biosynthetically install non-natural sialic acids into cell surface glycans, altering cell surface receptor activity and adhesive properties of cells. In this study, TProp modulated sialic acid-related biology in hNSCs to promote neuronal differentiation through modulation of cell adhesion molecules (integrins α6, β1, E-cadherin, and PSGL-1) and stem cell markers.
View Article and Find Full Text PDFSteep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.
View Article and Find Full Text PDFSulfur-containing units are fundamental components widely found in bioactive compounds, prompting notable efforts toward developing synthetic methodologies for incorporating sulfur functionality into organic precursors. The synthesis of sulfinate esters and sulfinamides has garnered significant interest owing to their immense potential for applications, especially in drug development. However, most existing synthetic protocols suffer from some limitations.
View Article and Find Full Text PDFA novel, highly diastereoselective, and metal-free synthesis of multisubstituted piperidines via an S1 approach is reported in this study. The method allows for the preparation of highly functionalized compounds with exceptional diastereomeric selectivities and consistently reproducible yields. These compounds are of significant interest due to their remarkable biological activities toward influenza endonuclease.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
There is very little research on the synthesis of β-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) -glycosides, which restricted their widespread application. Herein, a convenient and efficient approach to synthesize β-Kdo -glycosides was developed based on a TfO/(-Tol)SO preactivation strategy using bench stable peracetylated Kdo thioglycoside as a donor a thermodynamic S1-like mechanism.
View Article and Find Full Text PDFAntibiotic pollution, particularly the persistence of Sulfaquinoxaline (SQ) residues in livestock and poultry farming environments, has emerged as a pressing environmental concern. Despite this, there remains a limited understanding of the optimized conditions and mechanisms for the efficient degradation of SQ by microorganisms. To address this knowledge gap, we isolated Bacillus sp.
View Article and Find Full Text PDFProkaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD).
View Article and Find Full Text PDFSulfonamide antibiotics have a broad spectrum of antibacterial action and are widely used, but their overuse poses a threat to human health. In this study, a three-dimensional conjugated microporous polymer, which was designated as TPM-CMP, was synthesized via Friedel-Crafts reaction by using tetraphenylmethane (TPM) and biphenyl dichlorobenzene as monomers, and it was utilized as an adsorbent in solid-phase extraction (SPE) of sulfonamides. The TPM-CMP demonstrated high extraction efficiency for sulfonamides due to π-stacking interactions, hydrophobic forces, and pore-filling effects.
View Article and Find Full Text PDFElucidating biodegradation mechanisms and predicting pollutant reactivities are essential for advancing the application of biodegradation engineering to address the challenge of thousands of emerging contaminants. Molecular biology and computational chemistry are powerful tools for this purpose, enabling the investigation of biochemical reactions at both the gene and atomic levels. This study employs the biodegradation of ten sulfonamide antibiotics as a case study to demonstrate the integration of genomics and quantum chemistry approaches in exploring the biodegradation behavior of emerging contaminants.
View Article and Find Full Text PDFThe study presents a multi-functional and semiconductor polymer poly[bis(3-hexylthiophen-2-yl)thieno[3,4-c]pyrrole-4,6-dione] (PBDTTPD) doping strategy that significantly enhanced the performance of the two-terminal all-perovskite tandem perovskite solar cells (T-PSCs). An optimized power conversion efficiency (PCE) of 26.87% has been achieved.
View Article and Find Full Text PDFPreviously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023.
View Article and Find Full Text PDFIn this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.
View Article and Find Full Text PDFCatalytic enantioselective substitution of the readily available racemic α-halo carbonyl compounds by nitrogen nucleophiles represents one of the most convenient and direct approaches to access enantioenriched α-amino carbonyl compounds. Distinct from the two available strategies involving radicals and enolate ions, herein we have developed a new protocol featuring an electronically opposite way to weaken/cleave the carbon-halogen bond. A suitable chiral anion-based catalyst enables effective asymmetric control over the key positively charged intermediates.
View Article and Find Full Text PDFMgO surface makes it easy to introduce a certain amount of oxygen vacancy and can enhance catalytic reaction activity. Besides, as a silicoaluminate mineral material, halloysite nanotube (HNT) has a unique tubular structure. In this paper, the HNTs@MgO composite was successfully synthesized based on natural clay material HNTs as a carrier, and the CTL sensor based on HNTs@MgO was successfully developed for the rapid determination of ether in air.
View Article and Find Full Text PDFSweat lactate levels are closely related to an individual's physiological state and serve as critical indicators for assessing exercise intensity, muscle fatigue, and certain pathological conditions. Screen-printed electrodes (SPEs) offer a promising avenue for the development of low-cost, high-performance wearable devices for electrochemical sweat analysis. The material composition of SPEs significantly impacts their detection sensitivity and stability.
View Article and Find Full Text PDF