Publications by authors named "S van Velzen"

Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities or interacting with a stellar object in a close orbit. It has been suggested that this disk could be created when the SMBH disrupts a passing star, implying that many QPEs should be preceded by observable tidal disruption events (TDEs).

View Article and Find Full Text PDF

Purpose: Automatic comprehensive reporting of coronary artery disease (CAD) requires anatomical localization of the coronary artery pathologies. To address this, we propose a fully automatic method for extraction and anatomical labeling of the coronary artery tree using deep learning.

Approach: We include coronary CT angiography (CCTA) scans of 104 patients from two hospitals.

View Article and Find Full Text PDF

Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.

View Article and Find Full Text PDF

Aims: The study aimed, firstly, to validate automatically and visually scored coronary artery calcium (CAC) on low-dose computed tomography (CT) (LDCT) scans with a dedicated calcium scoring CT (CSCT) scan and, secondly, to assess the added value of CAC scored from LDCT scans acquired during [15O]-water-positron emission tomography (PET) myocardial perfusion imaging (MPI) on prediction of major adverse cardiac events (MACE).

Methods And Results: Five hundred seventy-two consecutive patients with suspected coronary artery disease, who underwent [15O]-water-PET MPI with LDCT and a dedicated CSCT scan were included. In the reference CSCT scans, manual CAC scoring was performed, while LDCT scans were scored visually and automatically using deep learning approach.

View Article and Find Full Text PDF

Background: Thoracic radiotherapy may damage the myocardium and arteries, increasing cardiovascular disease (CVD) risk. Women with a high local breast cancer (BC) recurrence risk may receive an additional radiation boost to the tumor bed.

Objective: We aimed to evaluate the CVD risk and specifically ischemic heart disease (IHD) in BC patients treated with a radiation boost, and investigated whether this was modified by age.

View Article and Find Full Text PDF